Progetto <u>CANOA</u> <u>CARCINOMA</u> <u>MANMARIO:</u> QUALI NOVITA' PER IL 2025?

"Saper leggere" uno studio clinico per migliorare la pratica clinica

Coordinatori Scientifici: Stefania Gori Giovanni L. Pappagallo

Verona, 28 - 29 Marzo 2025 Hotel Crowne Plaza

Benedetta Conte, MD

Dipartimento di Medicina Traslazionale Università del Piemonte Orientale SCDU Oncologia - AOU Maggiore Novara

Declaration of interests

Benedetta Conte, MD

Non profit research support: GILEAD

Can SNPs contribute to improving the management of treatment-related toxicities in breast cancer patients?

Should we test patients for SNPs before initiating antineoplastic therapy?

Can SNPs contribute to improving the management of treatment-related toxicities in breast cancer patients?

Perhaps – but not yet

Should we test patients for SNPs before initiating antineoplastic therapy?

Can SNPs contribute to improving the management of treatment-related toxicities in breast cancer patients?

Perhaps – but not yet

Should we test patients for SNPs before initiating antineoplastic therapy?

NO

SNPs as a biomarker of treatment-related toxicity: limitations

The *DPYD* case: One functional SNP = meaningful biological effect

SNPs as a biomarker of treatment-related toxicity: limitations

The *DPYD* case: One functional SNP = meaningful biological effect

The most common scenario: Each SNP has a small biological effect Multiple associated SNPs with similar effect → meaningful biomarker

SNPs as a biomarker of treatment-related toxicity: limitations

Human CYP19 Linkage Disequilibrium

LD = non-random association of alleles in a population.

LD arises because of the **physical proximity of SNPs** on the chromosome, which makes them **more likely to be co-inherited during meiosis** (recombination is less likely to separate them).

Genetic recombination rates vary across ancestries:

- Higher in African ancestry
- Lower in European ancestry

This makes **SNP-based polygenic risk scores non-transferable across populations**.

MA Cx et al, Cancer Res 2005

The lucky scenario: SNPs in the UGTA1 gene

Sacituzumab Govitecan

UDP-glucuronosiltransferase 1A1

SN-38 payload

- Active metabolite of irinotecan
 Topoisomerase I inhibitor
- High drug-to-antibody ratio (~8:1)

The lucky scenario: SNPs in the UGTA1 gene

TABLE 2. Clinical Recommendations for Patients Receiving Irinotecan on the basis of the Interpretation of the Results of the UGT1A1 Genetic Test

Genotype	Activity or Expression	Clinical Implication	Clinical Intervention
*1/*1	Normal	Average risk of irinotecan toxicity	Use standard starting dose ^{1,6,7} These patients may be able to tolerate irinotecan doses higher than the standard dose without compromising safety ^{5,45-48}
*1/*28	Reduced expression	Higher risk of	Use standard starting dose ^{1,6,7}
*1/*6	Reduced activity	irinotecan toxicity	These patients may be able to tolerate irinotecan doses higher than the standard dose without compromising safety ^{5,45-48}
*28/*28	Further reduction in expression	Highest risk of irinotecan toxicity Reduce the starting dose to at least one level lower the For specific dosing recommendations, see Table 3 After cycle 1 at a reduced dose upward titration at a	Reduce the starting dose to at least one level lower than the standard dose. ¹
*6/*6	Further reduction in activity		For specific dosing recommendations, see Table 3 After cycle 1 at a reduced dose, upward titration at subsequent cycles
*6/*28	Further reduction in activity and expression		can be considered, on the basis of individual tolerance ^{1,6,7}

UGTA1 *28/*28:

UGT1A1

Effect on UGT1A1

Severe neutropenia (G3-5): sensitivity of 11%, specificity of 94% Severe diarrhea (G3-5): sensitivity of 13%, specificity of 92%

Karas S et al, JCO Oncology Practice 2021

The lucky scenario: SNPs in the UGTA1 gene

N=67 TNBC N=52 (76.5%) Median FU: 3.8 months (IQR 0.90-23.7)

Genotype	Discontinuation due to PD	PFS HR (95% Cls)	p value	Discontinuation due to toxicity	Toxicity HR (95% Cls)*	p value
Homozygous	07/17	0.80	0 5/	0//17	5.52	0.03
(25%)	0//1/	(0.39-1.65)	0-1/17	(1.15-26.49)	0.00	
Heterozygous	13/2/	0.61	0 12	0/2/	ΝΔ	NΔ
(35.3%)	15/24	(0.33-1.12)	0.12	0/24	NA .	
Wild-type	40/07	1		02/27	1	
(39.7%)	10/27	(ref)	-	02/27	(ref)	•

100% of African Americans were UGTA1 *28/*28 homozygous

*Competing risk analysis

The most common scenario: SNPs in the CYP19A1 gene

- HR+ early breast cancer is characterized by a substantial risk of late metastasis. Extended therapy with AIs beyond 5 years reduces the risk of these late events by 20% to 30%¹⁻²
- However, such benefit comes at the price of increased incidence of skeletal and cardiovascular (CV) events³⁻⁶
- SNP in the gene encoding for the aromatase enzyme (CYP19A1) may affect aromatase activity and circulating estradiol levels^{7,8}

1. Gray R, SABCS 2018; 2. Pala L, The Breast 2023; 3. Gnant M, NEJM 2021; 4. Goodwin PJ, NEJM 2021; 5. Mamounas EP, Lancet Oncol 2019; 6. Goldvaser H, JNCI 2018; 7. Dunning Am JNCI 2017; 8. Haiman CA, Cancer Res 2007; 9. Colomer R CCR 2008; 10. Johansson H, Pharmacogenomics J 2020; 11. Garcia-Casado, BMC Cancer 2010; 12. Johansson H, Breast Cancer Res 2016.

GIM4 and GIM5 study design

SNPs analysis

Association with endpoints assessed under Mendelian model

T in heterozygosis gives the same phenotype as **GG** (i.e. same aromatase activity)

SNPs analysis

Association with endpoints assessed under Mendelian model

T in heterozygosis gives the same phenotype as **TT** (i.e. same aromatase activity)

SNPs analysis

Association with endpoints assessed under Mendelian model

T in heterozygosis gives a **mixed** phenotype (i.e. **intermediate** aromatase activity)

Standard Survival Model

All types of DFS events are treated as equal

SNPs	HR (95% Cls)	p value
rs10046-T/T	1.29 (0.83-2.01)	0.259
rs749292-T/T	1.45 (0.92-2.46)	0.108
rs727479-C/T+T/T	1.16 (0.74-1.82)	0.513

Standard Survival Model

All types of DFS events are treated as equal

One Hazard Ratio for all DFS events

SNPs	HR (95% Cls)	p value
rs10046-T/T	1.29 (0.83-2.01)	0.259
rs749292-T/T	1.45 (0.92-2.46)	0.108
rs727479-C/T+T/T	1.16 (0.74-1.82)	0.513

Competing Risk Model

Events of interest Distant recurrence Death with BC	Competing events Contralateral iBC 2 nd primary malignancy Death without BC				
Fine-Gray model → 2 subdistribution HR (sHR), one for each event type					
SNPs	sHR (95% Cls)	p value			
rs10046-T/T	1.57 (0.96-2.57)	0.071			
rs749292-T/T	1.83 (1.09-3.08)	0.023			
rs727479-C/T+T/T	2.16 (1.00-4.97)	0.050			

Fine et al, J of American Stat Ass, 1999

Variable	Subdistribution HR (95% Cls)	p value
SNPs-groups 0 high-risk SNP 1 high-risk SNP >1 high-risk SNP	1 2.55 (1.00-6.45) 3.48 (1.33-9.13)	0.048 0.011
Tumor size pT1 pT2 pT3-4	1 1.90 (1.13-3.20) 3.56 (1.79-7.10)	0.016 <0.001
Nodal status pN0 pN+	1 3.15 (1.62-6.13)	<0.001
(Neo)adjuvant CT No Yes	1 1.22 (0.52-2.84)	0.652
Age at diagnosis	0.99 (0.97-1.03)	0.940
Study cohort GIM4 GIM5	1 0.95 (0.58-1.56)	0.835

Overall survival according to SNPs-based groups

Overall survival according to SNPs-based groups

В

Cox multivariable model

1.00							Variable	HR (95% Cls)	p value
0.75 -						Δ 7%	SNPs-based groups 0 high-risk SNP 1 high-risk SNP >1 high-risk SNP	1 2.42 (1.04-5.70) 3.00 (1.24-7.32)	0.040 0.015
su							Tumor size		
<u></u> 0.50							pT1	1	
Ver							pT2	1.59 (0.99-2.59)	0.057
5	10-year survival	estimates					рТ3-4	2.92 (1.55-5.51)	<0.001
0.25	No high-risk SNP	96.5%. (95% C	1 93.2-99.9)				Nodal status		
0.23	1 high-risk SNP 9.	3.0%, (95% CI	90.7-95.4)				pN0	1	
	>1 high-risk SNP	89.6%, (95% C	[85.5-93.4)				pN+	2.16 (1.24-3.76)	0.007
0.00		•					(Neo)adjuvant CT No	1	
0	2	4	6	8	10	12	Yes	0.87 (0.45-1.66)	0.667
			Ye	ars			Age at diagnosis	1.06 (1.03-1.09)	<0.001
Nı	umber at risk						Study cohort		
— 1	133 133	132	130	111	96	59	GIM4	1	
	530 527	520	498 207	433	366	236	GIM5	0.78 (0.46-1.28)	0.325

High-risk SNPs rs10046-T/T rs749292-T/T rs727479-T/T

(death, second primary, BC recurrence)

High-risk SNPs mantain the protective effect on Skeletal and CV events regardless of other risk factors

	Skeletal events		
Variables	Subdistribution HR (95% Cls)	p value	
rs10046 and rs749292 genotypes rs10046 C/C + rs749292 C/C	-	-	
intermediate genotypes	1.00 (0.60-1.68)	0.988	
rs10046 T/T + rs749292 T/T	0.30 (0.10-0.88)	0.028	
Ever smoker			
No	1		
Yes	1.27 (0.73-2.23)	0.395	
Age at diagnosis			
<65	1		
>65	2.34 (1.48-3.69)	<0.001	
BMI			
≥24	1		
<24	1.03 (0.98-1.08)	0.218	
Previous bisphosphonates			
No	1		
Yes	2.02 (0.81-5.08)	0.134	

	Cardiovascular events		
Variables	Subdistribution HR (95% Cls)	p value	
rs727479 genotypes			
other genotypes	-	-	
rs727492-G/G	0.23 (0.05-1.02)	0.053	
Ever smoker			
No	1		
Yes	2.17 (0.81-5.78)	0.123	
Age at diagnosis			
<65	1		
>65	3.55 (1.40-9.00)	0.008	
BMI			
≥24	1		
<24	3.47 (0.58-9.74)	0.217	
Previous bisphosphonates			
No	1		
Yes	0.80 (0.20-3.45)	0.731	

SNPs of aromatase as a biomarkers of prognosis and toxicity

Conclusions

- Single functional SNPs (e.g., DPYD, UGT1A1) can significantly impact toxicity and support clinical decision-making (rare exceptions).
- Most SNPs have small individual effects, and meaningful biomarkers often arise only when multiple variants are analyzed together.
- SNPs in CYP19A1 (aromatase) genes may predict prognosis and toxicity in ER+ breast cancer, (evidence from large clinical datasets).
- Germline genomic data hold promise for personalizing endocrine and cytotoxic therapy, but further validation is essential.
- SNPs-based precision medicine is a powerful tool in the making but not yet ready for broad clinical application

Phase III SWOG-S1207 Trial Design

HOBOE TRIAL

- → Tamoxifen + Triptorelin (T)
- - → Zoledronic acid + Letrozole + Triptorelin (ZL)

T arm	Tamoxifen 20 mg/day for 2 years followed by an Al at standard dose for 3 years
Larm	Letrozole 2.5 mg/day for 5 years
ZL arm	Zoledronic acid* 4 mg i.v. every 6 months + Letrozole as above for 5 years
All arms	Triptorelin 3.75 mg, i.m. every 4 weeks for 5 years (or up to the age of 55)

Grazie per l'attenzione

Benedetta Conte, MD

Dipartimento di Medicina Traslazionale Università del Piemonte Orientale SCDU Oncologia - AOU Maggiore Novara