Nuove prospettive di trattamento del carcinoma endometriale

Michele Bartoletti

CRO Aviano

Conflict of interests

- GSK: advisory board, speaker fees
- MSD: advisory board, speaker fees
- Astrazeneca: advisory board, speaker fees
- EISAI: advisory board
- Roche: advisory board
- Abbvie: advisory board

Does endometrial cancer really exist?

Does endometrial cancer really exist?

NO

EC treatment must be guided by Clinico-pathologic and molecular characteristics How a greater understanding of the molecular characteristics of endometrial carcinoma impacts its treatment How a greater understanding of the molecular characteristics of endometrial carcinoma impacts its treatment

• New molecular targets and signatures, new targeted therapies

How a greater understanding of the molecular characteristics of endometrial carcinoma impacts its treatment

- New molecular targets and signatures, new targeted therapies
- Predictive and prognostic biomarkers to guide standard chemotherapy

Adjuvant therapies in early stage endometrial cancer

PORTEC 3

PORTEC 3

PORTEC 3

Two new predictive categories

Molecular classification - predictive value

Molecular classification - predictive value

FIGO staging of endometrial cancer 2023

Stage designation	Molecular findings in patients with early endometrial cancer (Stages I and II after surgical staging)
Stage IAm _{POLEmut}	POLEmut endometrial carcinoma, confined to the uterine corpus or with cervical extension, regardless of the degree of LVSI or histological type
Stage IICm _{p53abn}	p53abn endometrial carcinoma confined to the uterine corpus with any myometrial invasion, with or without cervical invasion, and regardless of the degree of LVSI or histological type

Further molecular stratification in NSMP category

Within the NSMP subclass, ER-neg stand out

Virmij Mol Diag 2023

DEFINITION OF RISK GROUPS

Low	Int	ermediate	High- Intermediate	High	Uncertain				
2023 FIGO staging [™]			Molecular classification*						
				POLEmut	MMRd	NSMP low- grade+ERpos	NSMP high- grade/ERneg**	p53abn	
Ι	Confin	ed to the ut	erine corpus						
IA	IA1	Low-grade	endometrioid, lin metrium (no myo	nited to invasion)	IAm POLEmut			**	
	IA2	Low-grade no/focal LV	endometrioid, my VSI	yoinvasion <50%,	IAm POLEmut			**	IICm p53abn
	IA3	Low-grade endometrioid carcinoma of the endometrium & ovarv#		IAm POLEmut			**	IICm p53abn	
IB		Low-grade endometrioid, myoinvasion ≥50%, no/focal LVSI		IAm POLEmut			**	IICm p53abn	
IC		High-grade histologies [^] , limited to polyp/endometrium		IAm POLEmut		n.a.			
II	Confined to the uterus								
IIA		Low-grade cervical str	endometrioid, inv roma	vasion of the	IAm POLEmut			**	IICm p53abn
IIB		Low-grade	endometrioid, su	bstantial LVSI***	IAm POLEmut			**	IICm p53abn
IIC		High-grade	e histologies^, my	oinvasion	IAm POLEmut	Myoinvasion <50%, no/focal LVSI	n.a.		IICm p53abn
					IAm POLEmut	Myoinvasion ≥50%, no/focal LVSI			
					IAm POLEmut	Cervical stromal invasion, no/focal LVSI			
					IAm POLEmut	Substantial LVSI**			

DEFINITION OF RISK GROUPS

<u>Prognostic risks</u> in the respective groups are defined as estimated overall 5-year risk of recurrence:

- low risk group:
- intermediate risk group:
- high-intermediate risk group:
- high risk group:

risk less than 8%; risk between 8 and 15%; risk between 15 and 25%; risk higher than 25%.

IO in early stage endometrial cancer

ENGOT-EN11/GOG-3053/KEYNOTE-B21 Study Design

- Histology (endometrioid vs non-endometrioid)
- FIGO (2009) surgical stage (I/II vs III/IVA)

• os '

^aChemotherapy was administered for 4 cycles in patients planned to receive chemoradiotherapy and 6 cycles for all other patients, including those planned for radiotherapy without radiosensitizing cisplatin. ^bRadiotherapy was optional at the discretion of the investigator, and cisplatin may have been given with EBRT as radiosensitizer; radiotherapy was started within 6 weeks after completion of carboplatin and paclitaxel (radiation may have been initiated during Stage 1 or Stage 2 depending on the number of cycles of chemotherapy that were administered).

Baseline Characteristics: ITT Population

Characteristic	Pembro + Chemo (n = 545)	Placebo + Chemo (n = 550)	
Age, median (range), y	62 (29–95)	62 (27–89)	
ECOG PS 0	409 (75%)	416 (76%)	
Race			
White	315 (58%)	362 (66%)	
Asian	189 (35%)	157 (29%)	
Multiple	23 (4%)	10 (2%)	
Black or African American	11 (2%)	13 (2%)	
American Indian or Alaska Native	2 (<1%)	3 (<1%)	
Missing	5 (<1%)	5 (<1%)	
Lymph node dissection	483 (89%)	502 (91%)	
Lymph node status			
Lymph node involvement	223 (41%)	250 (45%)	
No lymph node involvement	300 (55%)	284 (52%)	
Not evaluable	22 (4%)	16 (3%)	
MMR status at study entry			
dMMR	141 (26%)	140 (25%)	
pMMR	404 (74%)	410 (75%)	

Characteristic	Pembro + Chemo (n = 545)	Placebo + Chemo (n = 550)				
FIGO 2009 stage at study entry						
IA/B	146 (27%)	144 (26%)				
I	40 (7%)	41 (7%)				
IIIA	109 (20%)	94 (17%)				
IIIB	20 (4%)	19 (3%)				
IIIC1	144 (26%)	169 (31%)				
IIIC2	78 (14%)	81 (15%)				
IVA/Bª	8 (1%)	2 (<1%)				
Planned radiation therapy at study entry						
EBRT ^b with cisplatin	94 (17%)	95 (17%)				
EBRT ^b without cisplatin	256 (47%)	246 (45%)				
Brachytherapy only	49 (9%)	52 (9%)				
No EBRT or brachytherapy	146 (27%)	157 (29%)				
Histology subtype						
Endometrioid	297 (54%)	297 (54%)				
Non-endometrioid	248 (46%)	253 (46%)				

^a3 patients with stage IVB were randomized, including 2 in the pembro + chemo group and 1 in the placebo + chemo group. ^bWith or without brachytherapy. Data cutoff date: March 4, 2024.

DFS^a Similar Between Treatment Groups: ITT Population (Primary Endpoint)

^aDFS was defined as the time from randomization to local or distant recurrence of EC (assessed radiographically by the investigator or by histopathologic confirmation) or death from any cause. Data cutoff date: March 4, 2024.

Pembrolizumab Plus Chemotherapy Improved DFS^a in dMMR Subgroup

^aDFS was defined as the time from randomization to local or distant recurrence of EC (assessed radiographically by the investigator or by histopathologic confirmation) or death from any cause. Data cutoff date: March 4, 2024.

Adjuvant therapy in endometrial carcinoma stage I-IVA

^① for patients with FIGO 2023 stage IIIm POLEmut and IVAm POLEmut, no firm recommendation can be given, however de-descalation from high risk treatment can be considered.

⁽²⁾Especially for patients under 60 years of age and/or low-grade [II, A].

³EBRT is recommended for optimal pelvic control.

[®]VBT is an alternative option, especially for patients who underwent lymph node staging and are pN0.

⁽⁵⁾No adjuvant therapy can be considered, especially for patients who underwent lymph node staging and are pN0, without substantial LVSI and low-grade.

Adj. Tx adjuvant therapy; c&a-CT concurrent and adjuvant chemotherapy; CT chemotherapy; EBRT external beam radiotherapy; ICI immune checkpoint inhibitor; s-CT sequential chemotherapy; VBT vaginal brachytherapy.

TransPORTEC RAINBO Umbrella Trial

orange NSMP, but will be followed as an independent observational cohort Advanced stage endometrial cancer

Advanced disease, 1st line

GOG 209: platinum paclitaxel +/- anthracyclines

OS (median 37 vs 41 months)

PFS (median 13 vs 14 months)

Miller et al. JCO 2020

ENGOT-en9/LEAP-001 Study Design (NCT03884101)

Key Eligibility Criteria

- Stage III, Stage IV or recurrent endometrial carcinoma^a
- •Radiographically apparent disease either measurable or nonmeasurable
- No prior chemotherapy except in the neo/adjuvant setting^b
- •ECOG PS 0-1
- Tumor tissue sample for MMR testing

Stratification Factors

MMR status (pMMR vs dMMR),

If pMMR

- ECOG PS (0 vs 1)
- Measurable disease (yes vs no)
- Prior chemotherapy and/or chemoradiation (yes vs no)

Endpoints

- Dual primary: PFS per RECIST v1.1 by BICR and OS
- Secondary: ORR per RECIST v1.1 by BICR, safety, and HRQoL
- Exploratory: Included DOR per RECIST v1.1 by BICR

^aCarcinosarcoma (malignant mixed Müllerian tumor), endometrial leiomyosarcoma or other high grade sarcomas, or endometrial stromal sarcomas excluded.

AUC, area under the concentration-time curve; BICR, blinded independent central review; DOR, duration of response; HRQoL, health-related quality of life.

^b1 prior line of neoadjuvant and/or adjuvant chemotherapy in the setting of curative-intent resection was permitted if recurrence occurred ≥6 months after last dose; prior radiotherapy with or without chemotherapy, or prior hormonal therapy were also permitted. ^cPatients with ongoing clinical benefit could continue chemotherapy beyond 7 cycles if approved by sponsor.

Baseline Characteristics

	pMMR Po	opulation	All-comers		
Characteristic	LEN/PEMBRO n = 320	TC n = 322	LEN/PEMBRO n = 420	TC n = 422	
Age, median (range)	64 (22-87)	64 (32–88)	63 (22–93)	64 (32-88)	
Geographic location North America Western Europe Asia Rest of World	70 (21.9) 57 (17.8) 76 (23.8) 117 (36.6)	74 (23.0) 55 (17.1) 80 (24.8) 113 (35.1)	98 (23.3) 83 (19.8) 99 (23.6) 140 (33.3)	104 (24.6) 78 (18.5) 92 (21.8) 148 (35.1)	
MMR Status, no. (%) pMMR dMMR	320 (100)	322 (100)	320 (76.2) 100 (23.8)	322 (76.3) 100 (23.7)	
ECOG PS 1, no. (%)	141 (44.1)	145 (45.0)	170 (40.5)	182 (43.1)	
Measurable disease, no. (%)	318 (99.4)	317 (98.4)	418 (99.5)	416 (98.6)	
Prior chemotherapy and/or chemoradiation, no. (%) Chemoradiation alone	60 (18.8) 7 (2.2)	59 (18.3) 8 (2.5)	74 (17.6) 11 (2.6)	68 (16.1) 10 (2.4)	
Neo/adjuvant chemotherapy alone Neo/adjuvant chemotherapy and chemoradiation	52 (16.3) 1 (0.3)	50 (15.5) 1 (0.3)	62 (14.8) 1 (0.2)	57 (13.5) 1 (0.2)	
None	260 (81.3)	263 (81.7)	346 (82.4)	354 (83.9)	
Histology, no. (%) Endometrioid Non-endometrioid/adenocarcinoma/other ^a	196 (61.3) 124 (38.8)	199 (61.8) 123 (38.2)	280 (66.7) 140 (33.3)	283 (67.1) 139 (32.9)	
FIGO Stage IVB at initial diagnosis, no. (%)	131 (40.9)	124 (38.5)	165 (39.3)	150 (35.5)	

alncludes non-endometrioid, adenocarcinoma with no further information (17 patients in pMMR population; 22 patients among all-comers) and other (2 patients in pMMR population; 3 patients among all-comers). Data cutoff date: October 2, 2023

Progression-Free Survival Similar Between LEN/PEMBRO and TC^a

^aBased on RECIST v1.1 by blinded independent central review. No statistical testing was performed for PFS at the final analysis. Data cutoff date: October 2, 2023

Overall Survival Similar Between

Exploratory Analysis(No analytical) PFS and OS in the dMMR Subgroup

C. Marth et al. Presented at ESGO 2024 Meeting

Overall Survival Improved Following Progression on Prior Systemic Therapy

pMMR Population

No. of	Events/No. of Pati	ents	HR (95% CI)
Overall	366/642		1.02 (0.83-1.26)
Age			(,
<65 v	170/334		1.13 (0.84-1.53)
≥65 ý	196/308		0.94 (0.71-1.24)
Race			
White	263/434		0.95 (0.75-1.21)
Non-white	103/208	- -	1.21 (0.82-1.79)
Region			
North America	92/144		0.74 (0.49-1.12)
Western Europe	64/112	+	1.00 (0.61-1.63)
Asia	67/156		1.25 (0.77-2.02)
Rest of world	143/230	_ - _	1.10 (0.79-1.52)
Histology			
Endometrioid	206/395	_ e _	0.93 (0.71-1.22)
Non-endometrioid/other ^a	160/247		1.16 (0.85-1.58)
ECOG PS			
0	180/356		0.92 (0.68-1.23)
1	186/286		1.16 (0.87-1.54)
Prior chemo/chemoradiation			
Yes	74/119	• +	0.76 (0.48-1.20)
No	292/523		1 09 (0 87-1 37)
Prior neo/adjuvant chemo			
Yes	64/104		0.67 (0.41-1.11)
No	302/538		1.11 (0.88-1.39)
	0.1	1	10
	LEN/PEMBR	O better TC I	better

All-comers							
No. of Events/No. of Patients HR (95% C							
Overall	442/842	-	0.93 (0.77-1.12)				
Age							
<65 y	200/448	-+-	0.99 (0.75-1.30)				
_ ≥65 y	242/394		0.86 (0.66-1.10)				
Race							
White	329/588		0.88 (0.70-1.09)				
Non-white	113/254		1.04 (0.72-1.51)				
Region							
North America	118/202		0.67 (0.47-0.97)				
Western Europe	87/161		0.78 (0.51-1.19)				
Asia	72/191	-+	1.17 (0.73-1.86)				
Rest of world	165/288		1.09 (0.81-1.48)				
MMR Status							
dMMR	76/200	e	0.57 (0.36-0.91)				
pMMR	366/642	_ + _	1.02 (0.83-1.26)				
Histology							
Endometrioid	274/563		0.80 (0.63-1.01)				
Non-endometrioid/other ^a	168/279	- +•	1.14 (0.84-1.54)				
ECOG PS							
0	222/490		0.84 (0.64-1.09)				
1	220/352	-+-	1.02 (0.78-1.33)				
Prior chemo/chemoradiation							
Yes	83/142		0.65 (0.42-1.00)				
Prior neo/adjuvant chemo	70/121	-	0.04/0.40.4.02				
Yes	70/121		0.64 (0.40-1.03)				
NO	3/2//21	-	0.96 (0.79-1.18)				
	0.1	11	10				
	LEN/PEME	BRO better TO	better				

alncludes non-endometrioid, adenocarcinoma with no further information (17 patients in the pMMR population; 22 patients among all-comers) and other (2 patients in the pMMR population; 3 patients among all-comers). Data cutoff date: October 2, 2023

First-line practice changing trials in advanced endometrial cancer

Studio	Fase	Terapia	Popolazione	Endpoint principale	PFI	Carcinosarcomi inclusi
RUBY	III	Dostarlimab + Carboplatino/Paclitaxel	dMMR e pMMR EC	PFS, OS	≥6 mesi	🗹 Sì
KEYNOTE- 868/NRG- GY018	III	Pembrolizumab + Carboplatino/Paclitaxel	dMMR e pMMR EC	PFS	>12 mesi	🗙 No
AtTEnd	III	Atezolizumab + Carboplatino/Paclitaxel	dMMR e pMMR EC	PFS, OS	≥6 mesi	🗙 No
DUO-E	III	Durvalumab ± Olaparib + Chemioterapia	dMMR e pMMR EC	PFS	>12 mesi	☑ Sì
Chemo-immunotherapy is the NEW standard of care in 1° line dMMR patients

ENGOT-EN6-NSGO/GOG-3031/RUBY (NCT03981796)

Phase 3, randomized, double-blind, multicenter study of dostarlimab plus carboplatin-paclitaxel versus placebo plus carboplatin/paclitaxel in patients with primary advanced or recurrent EC

. ^bPatients were randomized based on either local or central MMR/MSI testing results. Central testing was used with local results were not available. For local determination of MMR/MSI status, IHC, next generation sequencing, and polymerase chain reaction assays were accepted. For central determination of MMR/MSI status IHC per Ventana MMR RxDx panel was used.

Statistically Significant Improvements in PFS

From New England Journal of Medicine, Mirza MR, Chase DM, Slomovitz MD, et al. Dostarlimab for primary advanced or recurrent endometrial cancer. DOI: 10.1056/NEJMoa2216334. Copyright © 2023 Massachusetts Medical Society.

CP, carboplatin-paclitaxel; D, dostarlimab; dMMR, mismatch repair deficient; HR, hazard ratio; MSI-H, microsatellite instability-high; NR, not reached, PBO, placebo; PFS, progression-free survival.

Dr Mansoor Raza Mirza

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

OS data of Dostarlimab + CP in dMMR

M. A. Powell et al. Annal of Oncol 2024

PFS by Methylation Status in dMMR Population

13%

72%

Ramez N. Eskander

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Data cutoff date: August 18, 2023.

Bartoletti et al. CTR 2024

DUO-E: Olaparib in maintenance in dMMR: Is it useful?

Prespecified exploratory analysis

Exploratory subgroup analysis. MMR status evaluated using the Ventana immunohistochemistry MMR panel. Rates were estimated by the KM method. *CI for median PFS was derived based on the Brookmeyer–Crowley method; [†]The HR and CI were estimated from an unstratified Cox proportional hazards model.

RUBY part 2: PFS in dMMR

^aMedian expected duration of follow-up.

CP, carboplatin-paclitaxel; dMMR, mismatch repair deficient; dostar, dostarlimab; HR, hazard ratio; MSI-H, microsatellite instability high; NE, not estimable; nira, niraparib; PFS, progression-free survival.

The less the better?

KEYNOTE-C93/GOG-3064/ENGOT-en 15 Study design

Phase III randomized trial of pembrolizumab vs. platinum doublet chemotherapy in first-line dMMR advanced or recurrent EC

ENGOT-en13/GINECO/DOMENICA Study design

Phase III randomized trial comparing chemotherapy alone vs.dostarlimab in first-line dMMR EC advanced/metastatic

Stratification:

Prior chemoradiation (yes vs. no)

Histology (endometrioid vs. non-endometrioid)

* Participants on the chemotherapy arm may have the opportunity to participate in the cross-over phase to receive pembrolizumab monotherapy upon RECIST v1.1 progression as per BICR.

clinicaltrials.gov:01244789; clinicaltrials.gov:05173987

Ana Oaknin MD PhD

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Primary endpoint: Investigator-assessed PFS by RECIST v1.1

Secondary endpoints: OS and PROs (key secondary endpoints), ORR, DoR, PFS2, TFST, safety and tolerability, central MMR

Exploratory endpoints: Translational (MSI, PD-1/-L1 status, immune signature); PFS according to iRECIST

NEW ESGO GUIDELINES 2025

70% of endometrial cancer are not dMMR

Should we use IO even in not dMMR advanced endometrial cancer?

Study Design

Key Eligibility Criteria

- Measurable stage III/IVA or measurable/nonmeasurable stage IVB or recurrent endometrial cancer
- Pathology report showing results of institutional MMR IHC testing
- ECOG PS 0, 1, or 2
- No prior chemo except prior adjuvant chemo if completed ≥12 mo before study

Stratification Factors

Ramez N. Eskander

- dMMR vs pMMR
- ECOG PS (0 or 1 vs 2)
- Prior adjuvant chemo (yes vs no)

Median follow-up:

- IA1 data cutoff date of December 16, 2022: dMMR cohort, 12 months; pMMR cohort, 7.9 months
- Current analysis data cutoff date of August 18, 2023: dMMR cohort, 20.6 months; pMMR cohort, 15.8 months

Endpoints

- **Primary:** PFS per RECIST v1.1 by investigator in pMMR and dMMR populations
- **Secondary:** Safety, ORR/DOR per RECIST v1.1 by BICR or investigator by treatment arm and MMR IHC status, OS in pMMR and dMMR populations, PRO/QoL in pMMR population, and concordance of MMR IHC testing at institution vs centralized

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Eskander et al. NEJM 2023

Still immature OS data for Pembrolizumab or placebo + carbopaclitaxel

OS data of Dostarlimab + CP in pMMR

M. A. Powell et al. Annal of Oncol 2024

RUBY part 1: subsequent immunotherapy use

	dMMR/MSI-H		MMRp/MSS		Overall	
	Dostarlimab plus carboplatin— paclitaxel ($n = 53$)	Placebo plus carboplatin— paclitaxel (n = 65)	Dostarlimab plus carboplatin— paclitaxel ($n = 192$)	Placebo plus carboplatin— paclitaxel (n = 184)	Dostarlimab plus carboplatin— paclitaxel ($n = 245$)	Placebo plus carboplatin— paclitaxel (n = 249)
Any follow-up	15 (28.3)	39 (60.0)	105 (54.7)	134 (72.8)	120 (49.0)	173 (69.5)
anticancer therapy, n (%)						
Immunotherapy	8 (15.1)	27 (41.5)	34 (17.7)	68 (37.0)	42 (17.1)	95 (38.2)
Pembrolizumab	4 (7.5)	21 (32.3)	9 (4.7)	20 (10.9)	13 (5.3)	41 (16.5)
Pembrolizumab—lenvatinib	3 (5.7)	2 (3.1)	22 (11.5)	43 (23.4)	25 (10.2)	45 (18.1)
Dostarlimab	0	3 (4.6)	0	0	0	3 (1.2)
MK7694A	0	1 (1.5)	0	0	0	1 (0.4)
Pembrolizumab—tamoxifen	1 (1.9)	0	0	0	1 (0.4)	0
Retifanlimab—epacadostat	1 (1.9)	0	0	2 (1.1)	1 (0.4)	2 (0.8)
Investigational product	0	0	1 (0.5)	1 (0.5)	1 (0.4)	1 (0.4)
Atezolizumab—ipatasertib	0	0	0	1 (0.5)	0	1 (0.4)
Avelumab—axitinib	0	0	0	1 (0.5)	0	1 (0.4)
Bevacizumab—atezolizumab	0	0	0	1 (0.5)	0	1 (0.4)
Durvalumab—cediranib	0	0	0	2 (1.1)	0	2 (0.8)
Durvalumab—olaparib	0	0	2 (1.0)	0	2 (0.8)	0
Nivolumab—BMS986207—	0	0	0	1 (0.5)	0	1 (0.4)
COM701						
Nivolumab—lucitanib	0	0	0	1 (0.5)	0	1 (0.4)
SGN-ALPV	0	0	0	1 (0.5)	0	1 (0.4)

JMMR, mismatch repair deficient; MMRp, mismatch repair proficient; MSI-H, microsatellite instability-high; MSS, microsatellite stable.

RUBY Molecular Classification Algorithm

• In RUBY Part 1, molecular classification was performed for all participants with WES results – 400 of 494 patients

Efficacy per molecular classification was an exploratory analysis.

dMMR, mismatch repair deficient; IHC, immunohistochemistry; MMRp, mismatch repair proficient; MSI-H, microsatellite instability-high; mut, mutated; NGS, next generation sequencing; NSMP, no specific molecular profile; PCR, polymerase chain reaction; POLε, polymerase epsilon; SCNA, somatic copy number alterations; TIL, tumor-infiltrating lymphocytes; TLS, tertiary lymphoid structures; TP53, tumor protein 53; WES, whole exome DNA sequencing; WT, wild type.

PFS According to Molecular Subgroup

Data based on exploratory analysis based on 400 patients from the RUBY trial with known molecular classification with whole exome sequencing. CP, carboplatin-paclitaxel; D, dostarlimab; dMMR, mismatch repair deficient; HR, hazard ratio; MSI-H, microsatellite instability–high; mut, mutated; NR, not reached; NSMP, no specific molecular profile; OS, overall survival; PBO, placebo; POLε, polymerase epsilon; TP53, tumor protein 53.

DUO-E study design

*Six cycles of carboplatin at an area under the concentration-time curve of 5 or 6 mg per mL/min and paclitaxel 175 mg/m².

bid, twice daily; CP, carboplatin/paclitaxel; durva, durvalumab; FIGO, International Federation of Gynaecology and Obstetrics; HRRm, homologous recombination repair mutation;

IV, intravenously; ola, olaparib; pbo, placebo; q3(4)w, every 3(4) weeks; R, randomisation; RECIST, Response Evaluation Criteria for Solid Tumours.

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

The median (range) duration of follow-up for PFS was 12.6 (0.0–31.6), 15.4 (0.0–29.1), and 15.4 (0.0–31.7) months in censored patients for the Control, Durva, and Durva+Ola arms, respectively. PFS rates were estimated by the KM method. *CI for median PFS is derived based on the Brookmeyer–Crowley method; [†]The primary PFS analysis for each comparison was performed separately. The HR and CI were estimated from a Cox proportional hazards model stratified by MMR and disease status. The CI was calculated using a profile likelihood approach. The *P* value was calculated using a log-rank test stratified by MMR and disease status. ITT, intent-to-treat; KM, Kaplan–Meier.

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Subgroup analysis of PFS by MMR status

Prespecified exploratory analysis

Exploratory subgroup analysis. MMR status evaluated using the Ventana immunohistochemistry MMR panel. Rates were estimated by the KM method. *CI for median PFS was derived based on the Brookmeyer–Crowley method; †The HR and CI were estimated from an unstratified Cox proportional hazards model.

DUO-E immature OS data

Overall data matur

THE POWER OF SHARED PURPOSE: Transforming Gynecologic Cancer Care

DCO: April 12, 2023. For the dMMR subpopulation, median duration of follow-up for OS was 18.4 (CP), 19.1 (CP+D) and 19.9 months (CP+D+O) in censored patients; for the pMMR subpopulation, median duration of follow-up was 18.6 (CP), 18.2 (CP+D) and 18.4 months (CP+D+O) in censored patients. MMR status was evaluated using the Ventana MMR immunohistochemistry panel. OS rates were estimated by the Kaplan–Meier method. *HRs and CIs were estimated from an unstratified Cox proportional hazards model.

ANNUAL MEETING ON WOMEN'S CANCER San Diego, CA • 2024

SGO 2024

DUO-E: who benefit the most?

pMMR subpopulation: PFS by subgroup

Post hoc exploratory analysis CP+D+O versus CP alone

CP+D versus CP alone

		HR	CP+D+O arm	CP arm			HR	CP+D arm	CP arm
		(95% CI)	n/N (%)	n/N (%)			(95% CI)	n/N (%)	n/N (%)
All patients	H--1	0.57 (0.44–0.73)	108/191 (56.5)	148/192 (77.1)		⊢ ●	0.77 (0.60-0.97)	124/192 (64.6)	148/192 (77.1)
Disease status		0 46 (0 31-0 66)	48/92 (52 2)	69/91 (75.8)			0 64 (0 45-0 91)	59/91 (64.8)	69/91 (75.8)
Recurrent disease	⊢ •	0.69 (0.49–0.96)	60/99 (60.6)	79/101 (78.2)			0.90 (0.65–1.25)	65/101 (64.4)	79/101 (78.2)
Region		0 78 (0 49-1 26)	33/54 (61.1)	36/54 (66 7)			1 22 (0 78_1 04)	30/54 (72.2)	36/54 (66 7)
Non-Asia	⊢ ⊷ →	0.50 (0.37-0.67)	75/137 (54.7)	112/138 (81.2)			0.63(0.48-0.84)	85/138 (61.6)	112/138 (81.2)
Age group, years		0.65 (0.46, 0.01)	60/101 (50 4)	77/00 (77.9)			0.72 (0.51 1.01)	E0/07 (C0 0)	77/00 (77 9)
<os ≥65</os 		0.49 (0.33-0.71)	48/90 (53.3)	71/93 (76.3)			0.72(0.51-1.01) 0.81(0.57-1.13)	65/95 (68.4)	71/93 (76.3)
HRRm status		0.05 (0.10, 0.50)	11/01 (50.4)	15/17 (00.0)			0.44 (0.47 4.07)	0/14 (57.4)	15/17 (00.0)
HRRM Non-HRRm		0.25(0.10-0.58) 0.62(0.45-0.86)	70/118 (59.3)	85/111 (76.6)		•	0.44(0.17-1.07) 0.79(0.58-1.08)	8/14 (57.1)	85/111 (76.6)
Unknown	⊢ ● →	0.58 (0.36-0.93)	27/52 (51.9)	48/64 (75.0)		· • ·	0.83 (0.54–1.26)	38/57 (66.7)	48/64 (75.0)
PD-L1 expression		0.44 (0.31_0.61)	54/112 (48.2)	94/124 (75.8)			0.71 (0.52, 0.05)	95/122 (62.0)	94/124 (75.8)
Negative (TAP score <1%)		0.87 (0.59–1.28)	52/73 (71.2)	53/67 (79.1)			0.95 (0.61–1.45)	35/53 (66.0)	53/67 (79.1)
Unknown		NC (NC–NC)	2/6 (33.3)	1/1 (100.0)			NC (NC-NC)	4/6 (66.7)	1/1 (100.0)
Fndometrioid		0.60 (0.42-0.85)	56/107 (52.3)	71/98 (72.4)			0 74 (0 52–1 04)	61/108 (56 5)	71/98 (72.4)
Serous	⊢ •••••	0.46 (0.27-0.76)	24/42 (57.1)	43/52 (82.7)		⊢ ● ⊢ Ⅰ	0.76 (0.49-1.18)	40/56 (71.4)	43/52 (82.7)
Other Histological grade	⊢ ●−†	0.64 (0.38–1.06)	28/42 (66.7)	34/42 (81.0)			0.93 (0.54–1.58)	23/28 (82.1)	34/42 (81.0)
Low grade (G1+G2)		0.68 (0.46-0.98)	48/90 (53.3)	64/87 (73.6)			0.89 (0.61-1.28)	51/89 (57.3)	64/87 (73.6)
High grade (G3)	⊢ •−1	0.46 (0.31–0.67)	45/77 (58.4)	66/84 (78.6)		⊢ ●−1	0.65 (0.45–0.93)	58/83 (69.9)	66/84 (78.6)
0		0.61 (0.45-0.82)	74/135 (54.8)	96/127 (75.6)			0 80 (0 59–1 07)	84/133 (63.2)	96/127 (75.6)
1	⊢_ ● i	0.49 (0.31-0.77)	34/56 (60.7)	52/65 (80.0)			0.70 (0.46–1.07)	39/58 (67.2)	52/65 (80.0)
FIGO stage		NC (NC-NC)	4/11 (36.4)	7/10 (70 0)			NC (NC-NC)	4/10 (40 0)	7/10 (70 0)
iv		0.49 (0.33-0.72)	42/78 (53.8)	61/79 (77.2)			0.71 (0.49–1.03)	55/80 (68.8)	61/79 (77.2)
	0.125 0.25 0.5 1	2			0.105 0.05			. ,	
	0.125 0.25 0.5 1	2			0.125 0.25	0.5 1 2	<u> </u>		
	Favors CP+D+O Favor	rs CP →			Favo	ors CP+D Favors	s CP →		
		DCO: April 12, 2022	Stratification facto	re (discasso status	MMD status and	d goographic region) are per the randomiz	ation code HDDm	status was

'HE POWER OF SHARED PURPOSE: Transforming Gynecologic Cancer Care

DCO: April 12, 2023. Stratification factors (disease status, MMR status, and geographic region) are per the randomization code. HRRm status was evaluated using the Foundation One CDx NGS assay and includes deleterious or suspected deleterious mutations in ATM, BRCA1, BRCA2, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, and RAD54L. HRRm status unknown includes patients recruited in China, where HRR testing was not performed, and patients with samples that were unavailable for testing. PD-L1 status in baseline tumor tissue was determined centrally using Ventana SP263 assay. Expression was assessed using a TAP score, calculated based on the proportion of the tumor area populated by tumor cells or immune cells with membranous PD-L1 staining. FIGO stage determined at the time of initial diagnosis of endometrial cancer under investigation.

Durvalumab plus carboplatin/paclitaxel followed by durvalumab with/without olaparib in endometrial cancer: exploratory analyses of biomarker/histological heterogeneity and efficacy in the DUO-E mismatch repair proficient subpopulation

Shannon N. Westin,¹ Kathleen Moore,² Hye Sook Chon,³ Jessica Thomes Pepin,⁴ Erin Salinas,⁵ David Starks,⁶ Paul A. Disilvestro,⁷ Brian Slomovitz,⁸ Elen Vettus,⁹ Fernando Gálvez,¹⁰ Kofi Agyemang-Prempeh,¹¹ Flora Zagouri,¹² Jae-Weon Kim,¹³ Qinglei Gao,¹⁴ Fernando Contreras Mejia,¹⁵ Andreia Cristina De Melo,¹⁶ Tadaaki Nishikawa,¹⁷ Matthew Kowgier,¹⁸ Sonia Iyer,¹⁹ Els Van Nieuwenhuysen²⁰

pMMR subpopulation: PFS by biomarker subgroup CP + durvalumab + olaparib versus CP

Post hoc exploratory analysis

All pMMR patients		———	0.57 (0.44-0.73)
PD-L1 expression*	Positive (TAP score ≥1%	6)	0.44 (0.31-0.61)
	Negative (TAP score <1	%)	0.87 (0.59–1.28)
	Unknown	·	NC (NC-NC)
POLEm and TP53m status ^{1,‡}	POLEm		NC (NC-NC)
	<i>TP53</i> m	• • • • • • • • • • • • • • • • • • •	0.47 (0.32-0.67)
	TP53 wild-type		0.71 (0.47–1.07)
	Unknown	⊢	0.74 (0.37-1.45)
HRRm status ^{†,§}	HRRm	++	0.47 (0.26-0.86)
	Non-HRRm	·	0.58 (0.43-0.78)
	Unknown	▶ ── ▶	0.74 (0.37-1.45)
BRCAm status [†]	BRCAm		NC (NC-NC)
	Non-BRCAm	·•·	0.57 (0.43-0.75)
	Unknown		0.74 (0.37-1.45)
Histology	Endometrioid	+ +	0.60 (0.42-0.85)
	Serous	••••••	0.46 (0.27-0.76)
	Other [®]	· · · · · ·	0.64 (0.38-1.06)
		0.25 0.5 1 2	
		Favours CP+D+O Favours CP	

HR (95% CI)

Potential benefit seen in TP53mut group, but we need to understand more about NSMP given the heterogenous nature of the group

Is TP53 a potential biomarker to predict benefit from ICI + chemotherapy (±) PARPi?

RUBY Part 1¹

Molecular subgroup analysis based on 400/494 patients with known molecular classification per WES

RUBY Part 2²

ENGOT

Exploratory PFS molecular subgroup analyses in overall population

There are inherent limitations in cross-study comparisons and caution is needed when reviewing data across individual (non-comparative) trials. This slide is for information purposes only and is not intended to imply or infer the noninferiority or superiority of any product, in terms of efficacy or safety.

CP, carboplatin/paclitaxel; dMMR, mismatch repair deficient; dostar, dostarlimab; HR, hazard ratio; ICI, immune checkpoint inhibitor; MSI-H, microsatellite instability high; NA, not applicable; nira, niraparib; NSMP, no specific molecular profile; OS, overall survival; PARPi, Poly (ADP-ribose) polymerase inhibitor; PFS, progression-free survival; TP53, tumour protein 53; WES, whole exome sequencing.

1. Mirza MR, et al. European Society for Medical Oncology (ESMO) Annual Meeting. 2023; Presentation #740MO. 2. Mirza MR, et al. Society of Gynecologic Oncology (SGO) Annual Meeting on Women's Cancer. 2024; Presentation LBA2.

Targeting HER2

Randomized Phase II Trial of Carboplatin-Paclitaxel vs Carboplatin-Paclitaxel-Trastuzumab in Uterine Serous Carcinomas That Overexpress HER2

Fader JCO 2018

NEW ESGO GUIDELINES 2025

After platinum chemotherapy

Is the patient dMMR or pMMR?

Single-Agent IO activity in dMMR Endometrial Cancer

Study	Drug	Ν	Patient selection	ORR
KEYNOTE158ª	Pembrolizumab	49	Advanced/metastatic dMMR	48%
GARNET ^b	Dostarlimab	103	Previously treated Recurrent/advanced d-MMR	45%
PHAEDRAC	Durvalumab	35	Advanced/metastatic dMMR	43%
Konstantinopoulos ^d	Avelumab	15	Advanced/metastatic dMMR	26.7%

Marabelle et al. J Clin Oncol. 2020; b. Oaknin A, et al. Ann Oncol 2020; c. Antill Y, et al. ASCO®. 2019; d. Konstantinopoulos PA, et al. ASCO®. 2019;

GARNET – Last up date

Α

Oaknin et al Clin Can Research 2023

Keynote - 158

Time (months)

O'Malley et al. JCO 2021

Keynote - 158

- \ - - - /

O'Malley et al. JCO 2021

Single-Agent IO activity in pMMR Endometrial Cancer

Study	Drug	Ν	Patient selection	ORR
KEYNOTE 28	Pembrolizumab	24	Advanced/metastatic PD- L1 pos	13%
GARNET ^b	Dostarlimab	142	Previously treated Recurrent/advanced pMMR	13%
PHAEDRAC	Durvalumab	36	Advanced/metastatic pMMR	3%
Konstantinopoulos ^d	Avelumab	13	Advanced/metastatic pMMR	6%

a. Marabelle et al. J Clin Oncol. 2020. b. Oaknin A, et al. Ann Oncol 2020; c. Antill Y, et al. ASCO®. 2019; d.Konstantinopoulos PA, et al. ASCO®. 2019

Phase III KEYNOTE-775: Second-line Pembrolizumab + Lenvatinib vs Chemotherapy in Advanced EC

All-comer (15% dMMR)

Makker JCO 2023

pMMR (updated follow-up)

Makker JCO 2023

What's next?

DESTINY-PanTumor02: A Phase 2 Study of T-DXd for **HER2-Expressing Solid Tumors**

An open-label, multicenter study (NCT04482309)

- Advanced solid tumors not eligible for curative therapy
- 2L+ patient population
- HER2 expression (IHC 3+ or 2+)
 - Local test or central test by HercepTest if local test not feasible (ASCO/CAP gastric cancer quidelines¹)^a
- Prior HER2-targeting therapy allowed

#ASCO23

ECOG/WHO PS 0–1

Primary endpoint

Confirmed ORR (investigator)^c

Secondary endpoints

- Data cut-off for analysis:
- Nov 16, 2022

^aPatients were eligible for either test. All patients were centrally confirmed. ^bPatients with tumors that express HER2, excluding tumors in the tumor-specific cohorts, and breast cancer, non-small cell lung cancer, gastric cancer, and colorectal cancer. Investigator-assessed per Response Evaluation Criteria In Solid Tumors version 1.1.

2L, second-line; ASCO, American Society of Clinical Oncology; DCR, disease control rate; CAP, College of American Pathologists; DOR, duration of response; ECOG, Eastern Cooperative Oncology Group; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PS, performance status; g3w, every 3 weeks; T-DXd, trastuzumab deruxtecan; WHO. World Health Organization. 1. Hofmann M, et al. Histopathology 2008;52(7):797-805.

PRESENTED BY: Funda Meric-Bernstam, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

Objective Response Rate by HER2 status

Analysis of ORR was performed in patients who received ≥ 1 dose of T-DXd; all patients (n=267; including 67 patients with IHC 1+ [n=25], IHC 0 [n=30], or unknown IHC status [n=12] by central testing) and patients with centrally confirmed HER2 IHC 3+ (n=75) or IHC 2+ (n=125) status. Analysis of DOR was performed in patients with objective response who received ≥ 1 dose of T-DXd; all patients (n=99; including 19 patients with IHC 1+ [n=6], IHC 0 [n=9], or unknown IHC status [n=4] by central testing) and patients with centrally confirmed HER2 IHC 3+ (n=46) or IHC 2+ (n=34) status. ^aResponses in extramammary Paget's disease, head and neck cancer, oropharyngeal neoplasm, and salivary gland cancer. BTC, biliary tract cancer; CI, confidence interval; DOR, duration of response; IHC, immunohistochemistry; NE, non-estimable; ORR, objective response rate.

#ASCO23

PRESENTED BY: Funda Meric-Bernstam, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

Nishikawa et al JCO 2023

ENGOT EN24

Study: ENGOT-en24 / DESTINY-EC01

An Open label, Randomized, Multicenter, Controlled, Phase III Study of First-Line Trastuzumab Deruxtecan (T-DXd) Monotherapy versus Carboplatin and Paclitaxel with or without Pembrolizumab in Patients with HER2-expressing (IHC 3+/IHC2+) Mismatch Repair Proficient (pMMR) Primary Advanced or Recurrent Endometrial Cancer

Sacituzumab – Tirumotecan (anti TROP2)

	EC (N = 44) ^a
ORR, % (n/N)	34.1 (15/44) ^b
Confirmed ORR	27.3 (12/44)
Subgroups	
TROP2 H-score >200	41.7 (5/12)
Prior IO	37.5 (6/16)
DCR, % (n/N)	75.0 (33/44)
PR	34.1 (15/44)
SD	40.9 (18/44)
DoR	
Median (range), months	5.7 (3.8, 7.4+)
PFS	
Median (95% CI), months	5.7 (3.7, 9.4)

a. Responses assessed per RECIST v1.1 by investigator.

b. Two patients with unconfirmed response were still receiving treatment at the data cutoff date.

CI, confidential interval; DCR, disease control rate; DoR, duration of response; EC, endometrial cancer; IO, immunotherapy; ORR, objective response rate; PFS, progression-free survival; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease; TROP2, trophoblast cell surface antigen 2.

*: Percentage Change from Baseline for Target Lesions was 0%

Data cutoff: March 05, 2024.

ENGOT-cx20/MK-2870-020: Sacituzumab Tirumotecan

A Phase 3 Randomized, Active-Controlled, Open-Label, Multicenter Study

ENGOT EN26 (Sacituzumab Govitecan)

Key Eligibility Criteria

- Recurrent, advanced or metastatic endometrial carcinoma
- Histologically confirmed diagnosis of epithelial endometrial carcinoma, including carcinosarcoma
- Prior treatment with platinum-based chemotherapy and anti-PD-(L)1 therapy
 - These agents may have been received separately/ sequentially or in combination and in any setting
 - For pts who are ineligible for anti-PD-(L)1 therapy due to comorbidities, or if anti-PD-(L)1 agents are not available as standard of care in any line of treatment according to local standards, prior treatment with an anti-PD-(L)1 agent is not required
- Up to 3 prior lines of systemic therapy, with no more than 2 prior lines in the recurrent or advanced setting
 - Hormonal or hormonal-based therapies do not count as a line of therapy
- ECOG PS 0-1

Arm A: Sacituzumab Govitecan (SG) 10 mg/kg IV Days 1 and 8, every 21 days

<u>Arm B:</u> Treatment of Physician's Choice (TPC)

Doxorubicin 60 mg/m² IV on Day 1, every 21 days, or Paclitaxel 80 mg/m² IV on Days 1, 8, and 15, every 28 days

Stratification Factors

N=520

R 1:1

- # of Prior lines of systemic therapy in any setting ($\leq 2 \text{ vs } 3$)
- Prior Anti-PD-(L)1 therapy (yes vs no)
- Histology (endometrioid vs non-endometrioid)

Key Study Endpoints

Primary Endpoint:

PFS by BICR

Key Secondary Endpoints:

- OS
- ORR by BICR
- Change from baseline and TTdD in Physical Function as assessed by EORTC-QLQ-C30

Secondary Endpoints:

- PFS by INV
- ORR by INV
- DOR, CBR by BICR and INV
- Safety
- Change from baseline in GHS/QoL as assessed by EORTC-QLQ-C30

Selinexor: Oral XPO1 Inhibitor

Selinexor is an oral selective inhibitor of XPO1-mediated nuclear export (SINE) compound

- XPO1 exports the major tumor suppressor proteins (TSPs) including p53 away from the nucleus, where TSPs carry out their function
- Tumor cells overexpress XPO1
- Tumor cells inactivate cytoplasmic *p*53 through protein degradation
- Selinexor inhibits XPO1 nuclear export, leads to retention / reactivation of TSPs in the nucleus and stabilization of p53
- Retention of wild-type *p53* (p53wt) and other TSPs in the cell nucleus leads to selective killing of cancer cells, while largely sparing normal cells

¹Fung HY, Chook YM. Semin Cancer Biol. 2014;27:52–61. ²Tai YT, Landesman Y, Acharya C, et al. Leukemia. 2014;28(1):155–165.

#ASC022

PRESENTED BY:

Vicky Makker, M.D., ENGOT-EN5/GOG-3055/SIENDO

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Preliminary Analysis of a Prespecified Exploratory Subgroup PFS: Patients with p53 Mutant/Aberrant EC

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Preliminary Analysis of a Prespecified Exploratory Subgroup PFS: Patients with p53 wild-type EC

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

ENGOT-EN3 / NSGO-PALEO

ENGOT model A, sponsor NSGO-CTU, NCT02730429

PFS in subgroups

• Safety and tolerability

PROs

- Measurable/evaluable endometrial cancer
- Primary stage 4 or relapsed disease
- ≥1 prior systemic therapy
- ER+ (≥10%) endometrioid adenocarcinoma
- ECOG PS 0/1
- No prior endocrine therapy except MPA and megestrol acetate
- No prior CDK inhibitor

Stratification:

- No. of prior lines (primary advanced disease vs 1st relapse vs ≥2 relapses)
- Measurable vs evaluable disease per RECIST
- Prior use of MPA/megestrol acetate

Objective response rate, disease control rate, PFS2, overall survival

ENGOT-EN3 / NSGO-PALEO

Efficacy (ITT population)

Primary endpoint: PFS

Secondary endpoint: Disease control rate*

Mirza, ESMO GYN 2023

 Molecular classification of EC is needed for a tailored approach in early and advanced setting

- Molecular classification of EC is needed for a tailored approach in early and advanced setting
- Some of the evidence guiding actual indications need to be reinforced and new biomarkers need further validation (p53, HRR/HRD)

- Molecular classification of EC is needed for a tailored approach in early and advanced setting
- Some of the evidence guiding actual indications need to be reinforced and new biomarkers need further validation (p53, HRR/HRD)
- Gray zones in treatment approach(POLE stage III/IV)

- Molecular classification of EC is needed for a tailored approach in early and advanced setting
- Some of the evidence guiding actual indications need to be reinforced and new biomarkers need further validation (p53, HRR/HRD)
- Gray zones in treatment approach(POLE stage III/IV)
- With the next coming new bullets (selinexor, CDK 4/6i, ADC) treatment's sequencing will increase importance

michele.bartoletti@cro.it

