

2025: NOVITÀ NEL TRATTAMENTO Delle neoplasie ginecologiche

Carcinoma ovarico stadio I-II e terapia adiuvante: quando e quale?

Veronica Parolin

AOUI Verona

2025: NOVITÀ NEL TRATTAMENTO Delle neoplasie ginecologiche

SCARCITY OF LITERATURE !!!!

Outline

- Definition for early stages: stage IA-IC, IA-IIB, IA-IIIA?
 Indications for adjuvant therapies: Define risk of recurrence !!!
- For who? Duration ?
- Alternative to chemotherapy?
- Particularities (by hystology)

Epidemiology & Prognosis

- Majority of cancers diagnosed at advanced disease
- More than 70-80% of patients will relapse
- Outcome for early stage is very good: 5y survival in the range of 80 % to 93 %

Ovarian cancer early stage (FIGO 2014)

Stage IA Cancer inside

Primary Peritoneal Cancer

Fallonian

			Tumor involving 1 ovary Capsule intact No tumor present on external surface No malignant cells in ascites or peritoneal washings	Ovary Uterus Vagina Cervix
Stage I Tumor confined to ovaries	IB		Tumor involving both ovaries Capsule intact No tumor present on external surface No malignant cells in ascites or peritoneal washings	Cancer inside both ovaries or fallopian tubes tube Fallopian tube Fallopian
			Tumor limited to 1 or both ovaries	Stage IC
		IC1	Surgical spill	Fallopian tube
	IC	IC2	Capsule rupture before surgery or tumor on ovarian surface	a b Cancer cells i pelvic periton fluid
		IC3	Malignant cells in ascites or peritoneal washings	Stage II
Stage II Tumor involves 1 or both ovaries with pelvic	IIA		Extension and/or implant on uterus and/or fallopian tubes	Cancer in pelvic peritoneum -Peritoneum
extension (below the pelvic brim) or primary peritoneal cancer	IIB		Extension to other pelvic intraperitoneal tissues	

What is early stage ovarian cancer?

- Definition of early stage (IA-IC; IA-IIB?)
- ESMO clinical practice guideline 2023: Figo I-IIA
- NCCN recommends same treatment algorithm for stage II as for stage III/IV

Figure 1. Management of early EOC (FIGO stage I-II).

NCCN Guidelines Version 3.2024

PROGNOSTIC FACTORS IN EARLY OC

Independent prognostic factors

- Age over 50-60 years old
- Spontaneous or surgical capsule rupture
 - Stage IC1 vs IC2
- Histological grade
- Histology as clear cell carcinoma
- Complete surgical staging or not
 - Better OS & PFS for restaging +/- CT vs CT alone!

Prognostic Factors for High-Risk Early-Stage Epithelial Ovarian Cancer

A Gynecologic Oncology Group Study

TABLE 3

Multivariate Analysis of Prognostic Factors for Recurrence-free Survival (RFS) and Overall Survival (OS) (N = 506)

	Dis	sease recurre	nce	Death		
	HR	95% CI	Р	HR	95% CI	Р
Age, y						
< 60	1.0			1.0		
≥ 60	1.57	1.12-2.19	.009	1.96	1.41-2.71	<.00]
Stage						
IA or IB	1.0			1.0		
IC	1.74	0.91-3.33	.003	1.54	0.85-2.79	.005
II	2.70	1.41-5.16		2.36	1.30-4.27	
Tumor grade*						
1	1.0			1.0		
2	1.84	1.04-3.27		1.23	0.72-2.09	
3	2.47	1.39-4.37	.02	1.86	1.10-3.15	.09
Not graded, clear cell	1.66	0.91-3.04		1.46	0.85-2.50	
Cytology						
Negative	1.0			1.0		
Positive	1.72	1.21-2.45	.003	1.53	1.09-2.16	.02

HR indicates hazard ratio; CI, confidence interval.

 $\ast\,$ Hazard ratio estimated by Cox model adjusted for age group, stage, tumor grade, and cytology, as well as stratified with type of treatment.

Prognostic importance of degree of differentiation and cyst rupture in stage I invasive epithelial ovarian carcinoma

Table 3: Significant variables for actuarial disease-free survival in final multivariate model

Degree of differentiation: the most powerful prognostic indicator of DFS, followed by rupture before and during surgery

ADJUVANT TREATMENT in EARLY STAGE

SURGERY !!!

To remove the disease and for accurate staging

+/- CHEMOTHERAPY

- FSS for young women low risk
- Important role of trained gynaecologist oncologist
- Lymphadenectomy?

Role of Lymphadenectomy

Table 2 Three-year disease-specific survival

	Total (%)	1988–1992 (%)	1993–1997 (%)	1998-2001 (%)	Log-rank
Overall	87.2 (±0.4)	86.1 (±0.7)	87.2 (±0.6)	88.8 (±0.8)	P=0.076
Lymphadenectomy Yes No	93.3 (±0.5) 82.0 (±0.6) δ1	1.3% 93.2 (± 1.0) 82.8 (± 1.0)	93.5 (±0.7) 81.2 (±1.0)	93.1 (±0.9) 82.0 (±1.6)	P<0.001 [△] P=0.978* P=0.211*
Stage I	91.8 (±0.4)	91.4 (±0.7)	91.5 (±0.6)	93.4 (±0.8)	$P < 0.001^{\Delta}$ $P = 0.202^{*}$ $P < 0.001^{\Delta}$
Lymphadenectomy No lymphadenectomy Stage II	95.2 (±0.5) 89.0 (±0.6) 74.2 (±1.0) δ	6.2% 95.0 (±1.0) 90.0 (±0.9) 70.7 (±1.8)	94.7 (±0.7) 88.4 (±0.9) 74.5 (±1.5)	96.3 (±0.8) 88.6 (±1.6) 77.3 (±2.1)	P = 0.468* P = 0.295* P = 0.057*
Lymphadenectomy No lymphadenectomy	87.4 (±1.3) 63.4 (±1.5) δ2	4.0% 87.0 (±2.8) 63.2 (±2.4)	89.5 (±1.8) 62.1 (±2.3)	84.3 (±2.7) 67.0 (±3.5)	$P < 0.001^{\Delta}$ $P = 0.425^{*}$ $P = 0.410^{*}$

Chan KJ et al., BJC (2008) 98, 1191 – 1196

ADJUVANT CHEMOTHERAPY

Heterogeneous population

inadequate surgery

use of non standard chemotherapy drugs

survival benefit only in certain subsets

Varying number of chemotherapy cycles

ADJUVANT CHEMOTHERAPY

RANDOMIZED PHASE III TRIALS

Adjuvant chemotherapy versus observation

ICON-1 (n=477)

- Histol. confirmed EOC
- Clinician uncertain if CHT needed
- Surgery: all visible tumour removed
 - o Radical hysterectomy, bilat. adnexectomy, omentectomy as minimum
 - o Lymphadenectomy not mandated
- Primary endpoint: overall survival

ACTION (=448)

- Histol. confirmed EOC
 - FIGO IA/B & G2/3
 - FIGO IC-IIA all grades
 - FIGO I-IIA clear cell
- Surgery: strict guidelines for comprehensive surgical staging
 - hysterectomy, bilat. Adnexectomy + surgical staging:
 - Omentectomy, peritoneal washings; blind biopsies (pelvic peritoneum, paracolic gutters; right hemidiaphragm) iliac & periaortic lymph nodes sampling (all met = staging optimal)
- Primary endpoint: overall survival

ICON Collaborators., JNCI, Vol. 95, No. 2, January 15, 2003; pp. 125- Trimbos B et al., JNCI, Vol. 95, No. 2, January 15, 2003; pp. 113

RANDOMIZED PHASE III TRIALS

Adjuvant chemotherapy versus observation

ICON-1 (n=477)

- Histol. confirmed EOC
- Clinician uncertain if CHT needed
- Surgery: all visible tumour removed
 - Radical hysterectomy, bilat. adnexectomy, omentectomy as minimum
 - o Lymphadenectomy not mandated
- Primary endpoint: overall survival

Patient characteristica

- 93% stage I (40% IC)
- 32% serous; 23% mucinous; 23% endometrioid; 15% CCC²
- 27% G3; 41% G2; 32% G1
- Chemoptherapy received (6 cylcles recommended):
 - o 86% carboplatin mono
 - o 10% cisplatin combo
 - o 2% other (platinum based)
 - o 2% not received
 - o 85% received 6 cycles

ACTION (=448)

- Histol. confirmed EOC
 - FIGO IA/B & G2/3
 - FIGO IC-IIA all grades
 - FIGO I–IIA clear cell
- Surgery: strict guidelines for comprehensive surgical staging
 - hysterectomy, bilat. Adnexectomy + surgical staging:
 - Omentectomy, peritoneal washings; blind biopsies (pelvic peritoneum, paracolic gutters; right hemidiaphragm) iliac & periaortic lymph nodes sampling (all met = staging optimal)
- Primary endpoint: overall survival

Patient characteristica

- 93% stage I (50% IC)
- 35% serous; 17% mucinous; 27% endometrioid; 14% CCC
- 35% G3; 51% G2; 12% G1
- Surgical staging:
 - optimal: 34%
 - minimal/inadequate: 35%
- Chemoptherapy received (6 cylcles recommended):
 - 47% Cisplatin/Cyclophosphamid
 - o 33% carboplatin mono

ICON Collaborators., JNCI, Vol. 95, No. 2, January 15, 2003; pp. 125- Trimbos B et al., JNCI, Vol. 95, No. 2, January 15, 2003; pp. 113

PRIMARY ENDPOINT: OS

ICON Collaborators., JNCI, Vol. 95, No. 2, January 15, 2003; pp. 125

ACTION

Trimbos B et al., JNCI, Vol. 95, No. 2, January 15, 2003; pp. 113

Combined ICON1 and ACTION: POOLED ANALYSIS (N=925)

Adjuvant chemotherapy versus observation

JOURNAL ARTICLE

International Collaborative Ovarian Neoplasm Trial 1 and Adjuvant ChemoTherapy In Ovarian Neoplasm Trial: Two Parallel Randomized Phase III Trials of Adjuvant Chemotherapy in Patients With Early-Stage Ovarian Carcinoma Getaccess >

International Collaborative Ovarian Neoplasm 1 (ICON1), European Organisation for Research and Treatment of Cancer Collaborators–Adjuvant ChemoTherapy In Ovarian Neoplasm (EORTC–ACTION)

INCl. Journal of the National Cancer Institute Volume 95 Issue 2 15 January 2003 Pages

Median FU:	
ACTION:	59 months
ICON1:	51 months

Trimbos / Vergote et al., JNCI, Vol. 95, No. 2, January 15, 2003; pp. 105

ICON1 and ACTION POOLED ANALYSIS (N=925)

Subgroup analysis

No subgroup identified, that benefited less or more from adjuvant chemotherapy (age, grade, histotype, stage)

A separate subgroup analysis of staging completeness was not done because information about surgical staging was not collected in the ICON1 trial

Trimbos / Vergote et al., JNCI, Vol. 95, No. 2, January 15, 2003; pp. 105

UPDATED ICON1 RESULTS (median FU 10ys)

Annals of Oncology 25: 1165–1171, 2014 doi:10.1093/annonc/mdu116 Published online 14 March 2014

Optimal treatment of early-stage ovarian cancer

F. Collinson^{1†}, W. Qian^{2†}, R. Fossati³, A. Lissoni⁴, C. Williams⁵, M. Parmar^{6*}, J. Ledermann⁷, N. Colombo⁸ & A. Swart⁹ on behalf of the ICON1 collaborators

Grade I (%)	Grade 2 (%)	Grade 3 (%)		
13	20	10	High-risk:	47 %
3	4	4	Intermediate:	38%
15	17	12	Low-risk:	139
	13 3 15	13 3 15 20 4 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132010High-risk:344151712Low-risk:

Extended FU from ICON1 confirms that adjuvant chemotherapy should be offered to women with early-stage OC, particularly those with high-risk disease.

HR = 0.48 (95% CI 0.31–0.73, P < 0.001) Diff. @10 years: 23%

Figure 2. Updated ICON1 results with median follow-up 10 years.

HR = 0.52 (95% CI 0.33–0.81, P = 0.004) Diff. @ 10years: 18%

Impact of surgery on Adjuvant CT ACTION – 10 ys FU

Trimbos B et al., J Natl Cancer Inst 2010;102:982–987

Importance of complete staging!

ESMO CLINICAL PRACTICE GUIDELINE 2023

Management of early stage ovarian cancer (FIGO I-II)

Recommendations

Surgical staging is recommended in presumed early-stage ovarian cancer for classification and recommendation of optimal systemic therapy [III, A]. Adjuvant ChT in early-stage ovarian cancer is generally recommended for FIGO stage I-IIB (see exceptions

below) [II, A], either paclitaxel—carboplatin [I, B] or carboplatin (six cycles) alone [I, A].

Histologies	Stage IA	Stage IB/C1	Stage IC2-3	Stage IIA
HGSOC	Yes	Yes	Yes	Yes
high-grade Endometrioid (G3)	Yes	Yes	Yes	Yes
LGSOC	No	Option*	Option*	Yes
Low-grade Endometrioid (G1/2)	No	Option*	Yes	Yes
Expansile Mucinous (G1/2)	No	Option*	Option*	Yes
Infiltrative Mucinous (G3)	No	Yes	Yes	Yes
Clear cell	Option*	Option*	Yes	Yes

Gonzalez-Martin A et al., Ann Oncol . 2023 Oct;34(10):833-848

ADJUVANT CHEMOTHERAPY

- Both regimens, Carboplatin mono and Carboplatin +
 Paclitaxel are used
- The addition of Paclitaxel leads to significantly more toxicity, including long term toxicity like PNP
- NO answer by data from ICON1 & ACTION
 - $\checkmark\,$ Non-randomized for this question
 - Single agent platin most frequently used in ICON1 & the pooled analysis of ICON1 & ACTION

Choice of optimal adj CT regimen & duration of treatment in early stage EOC remains a subject of continuing debate

Only limited data available

ICON3 - STAGE I PATIENTS (N=120; 6%)

6x Carboplatin vs 6x Carboplatin/Paclitaxel

- Small samples seize
- Exploratory subgroup analysis
- HR_{RFS} of 0.71 supports combination
- Wide confidence intervals & lack of signal for OS argue against it
- → the optimal chemotherapy regimen for early stage EOC remains an open question (in clinical practice both are used)

Collinson F et al., Annals of Oncology 25: 1165–1171, 2014

	Carboplatin (N=76)	Carboplatin/paclita
Number	n (%)	n (%)
Age		
<55	27 (36)	21 (48)
55-65	29 (38)	10 (23)
>65	20 (26)	13 (30)
Histology		
Serous	30 (39)	20 (45)
Mucinous	8 (11)	3 (7)
Endometroid	18 (24)	9 (20)
Clear cell	14 (18)	8 (18)
Undifferentiated	2 (3)	Û Í
Other	4 (5)	4 (9)
Grade	• •	
Poor	26 (34)	15 (34)
Moderate	35 (46)	12 (27)
Well	12 (16)	15 (34)
Unknown	3 (4)	2 (5)

Retrospective single center experience (n=95, non-randomized)

Serous 39%, endometrioid 30%, clear cell 23% and mucinous 8%

Conclusions Combination therapy is administered more often than carboplatin; especially in those with younger age, better PS and nonmucinous histology. Recurrence and death rates were similar with both treatments. Well-designed trials are needed to identify the optimum chemotherapy regimen in this group.

Adam G et al., BJOG 2010;117:1459–1467

ADJUVANT CHEMOTHERAPY

GOG 157: DURATION OF ADJUVANT CHEMOTHERAPY (N=427) 3 versus 6 cycles of Carboplatin (AUC7.5)/Paclitaxel (175) q3w

GOG 157: DURATION OF ADJUVANT CHEMOTHERAPY (N=427)

Outcomes by histotype

J.K. Chan et al., Gynecologic Oncology 116 (2010) 301–306

ESMO CLINICAL PRACTICE GUIDELINE 2023

Management of early stage ovarian cancer (FIGO I-II)

Figure 1. Management of early EOC (FIGO stage I-II).

Gonzalez-Martin A et al., Ann Oncol . 2023 Oct;34(10):833-848

Recommendations

- Surgical staging is recommended in presumed early-stage ovarian cancer for classification and recommendation of optimal systemic therapy [III, A].
- Adjuvant ChT in early-stage ovarian cancer is generally recommended for FIGO stage I-IIB (see exceptions below) [II, A], either paclitaxel—carboplatin [I, B] or carboplatin (six cycles) alone [I, A].
- For patients receiving paclitaxel—carboplatin, a minimum of three cycles are recommended except for HGSC/high-grade EC or any stage IC-II regardless of histotype, for which six cycles are suggested [II, B].
- The benefit of adjuvant ChT is uncertain and can be considered as optional [III, C] for:
 - o LGSC stage IB-IC
 - o CCC stage IA-IC1
 - o Low-grade EC stage IB-IC
 - o Expansile MC stage IC
 - o Infiltrative MC stage IA
- Adjuvant ChT is not recommended in completely staged patients with LGSC stage IA, low-grade EC stage IA or expansile MC stage IA-IB [II, E].

ALTERNATIVE TO CT ALONE?

Subgroup analysis of PFS

Final OS by histology

	Restric	ted mean	Mediar	, months				
Subgroup	Control	Researc h	Control	Researc h	HR (95% CI)	Events/n	Research better	Control better
All patients	44.6	45.5	58.6	58.0	0.99 (0.85–1.14)	714/1528	E	3
High-grade serous	43.9	44.9	53.5	52.4	0.99 (0.81–1.21)	380/743	8	3
Low-grade serous	45.5	46.0	58.4	59.1	0.95 (0.69–1.31)	153/335	-:	-
Clear cell stage I/II	53.9	53.7	NR	66.9	1.59 (0.57–4.48)	15/81	-	
Clear cell stage III/IV	35.1	36.6	31.8	30.7	0.80 (0.39–1.66)	29/46		_
Clear cell	48.5	46.7	NR	66.9	1.15 (0.64–2.09)	44/127		

Place for parp inhibitors?

- Challenges
- Efficacy versus safety compared to CT
- Duration of therapy
- Alternative to CT versus maintenance
- Standard CT?

HETEROGENEITY OF OVARIAN CANCER: HISTOLOGY

EOC is a heterogenous group of tumours with distinctly different underlying biology, behaviour, patterns of spread, prognosis & therapeutic targets

Vaughan S et al., Nat Rev Cancer. 2011 Sep 23;11(10):719-25 Banerjee S et al. Clin Cancer Res. 2013 Mar 1;19(5):961-8

- ICON1 & ACTION are a mixed bag of heterogenous tumors
- Rarer histologies have higher representation compared to trials in advanced stages
- as they are more frequently diagnosed in earlier stages
- Information of histology limited by lack of central review & changes of the classification over time
- No distinction made here between low-grade & high-grade serous EOC

Survival by Histotype: advanced versus early stage EOC

Advanced stage EOC FIGO III-IV Early stage EOC FIGO IA-II overall survival by histology Disease-specific survival by histology 1.0 Non-serous histologies have a worse 100 prognosis in advanced stages. Most 0.9 Mucinous (n=1601) likely due to suboptimal treatment 0.8 Endometrioid (n=2230) (Carbo/Pacli) 80 Clear cell (n=940) Proportion Surviving 0.7 Percent survival Serous (n=2214) Transitional 0.6 60 0.5 **Clear** cell Non-serous histologies have a better Serous (high-grade&low-grade) 0.4 40 prognosis in early stages where mucinous adjuvant treatment may play a lesser 0.3 role for subtypes with a better 20 0.2 82.8% stage III 73.4% stage I prognosis 0.1 17.2% stage IV 26.4% stage II Stratified anaylsis by 0 0.0 histology important but 12 72 96 24 36 60 limited by small numbers 50 100 150 n B Months on Study and lack of central Time (months) Numbers at risk Data on 8704 women with stage III/IV EOC from 7 randomized trials histologic review

Mackay HE et al., Int J Gynecol Cancer. 2010 Aug;20(6):945-52

Chan KJ et al., BJC (2008) 98, 1191 – 1196

OVARIAN CLEAR CELL CARCINOMA

0000

PROGNOSIS: Population-based regional study 1986-2011 (n=132)

No chemo: 7.6%; platinum: 34.1%; platinum + taxane 58.3°

 Table 2
 Multivariable analyses of clinicopathological parameters in relation to recurrence-free survival of stage I patients

	Recurrence-free survival		
	Hazard ratio (95 % CI)	Р	
Total			
Age			
<40	1		
≥ 40	0.903 (0.272-3.001)	0.8677	
FIGO stage			
IA	1		
IC(r)	0.948 (0.139-6.448)	0.9565	
IC(non-r)	9.394 (1.445-61.070)	0.0190	
Preoperative CA125 value (U/m	l)		
\leq 35 or unknown	1		
>35	3.892 (0.835-18.145)	0.0836	
Surgery			
Radical	1		
Conservative	1.046 (0.258-4.235)	0.9498	
Chemotherapy			
Taxane plus platinum	1		
Conventional platinum-based	1.184 (0.385-3.636)	0.7684	
None	1.633 (0.133-20.044)	0.7014	

IC(r) patients who had only intraoperative capsule rupture (no surface involvement and negative cytology); IC(non-r) as IC excluding IC(r), including patients with preoperative capsule rupture, or surface involvement irrespective of cytological washings/ascites

Kajiyama H et al., Int J Clin Oncol (2014) 19:921-927

OCCC stage I

Role of Adjuvant Chemotherapy (n=73)

no chemo: n= 43; chemo: n=30

Very, very, very small numbers....

Takada T et al., IJGC Volume 22, Number 4, May 2012

OCCC stage I

Role of Adjuvant Chemotherapy; 1991-2007 (n=185)

Stage IA & IC1: no chemo: n= 43; chemo: n=91

Completely staged OCCC with stage IA/IC1 has an excellent prognosis, →regardless of chemotherapy

Mizuno Met al., IJGC Volume 22, Number 7, September 2012

OCCC Early stage

Risk Stratification

Retrospective MSKCC 1996 – 2020 (n=182) MMR & TP53 etc.

MMRd	7.3%	not associated with PFS/OS HR _{PFS} 0.75 (0.10 – 5.68, p=0.82)
TP53mut	4.5%	significantly associate with PFS/OS HR _{PFS} 0.06 (0.02 – 0.25, p<0.001) in favour of wildtype
Adj. CHT	91.2%	not associatedd with PFS/OS HR_{PFS} 1.40 (0.34 – 5.86, p=0.69) stage 1A/IC1 CHT vs observation: 94% vs 100% OS
Endometr Fertility sp	ioses 67% paring in 9 p	not associatedd with PFS/OS HR _{PFS} 1.52 (0.73 – 3.14, p=0.26) ots. None had recurrence, 5 pregnancies

Abberant p53 expression may portend worse outcomes

Manning-Geist B, et al. Int J Gynecol Cancer 2022;32:1576–1582

OCCC Early stage SEER database

- n=1995 stage I OCCC
- 69% adjuv. CHT
- Stage IA \neq IC

NO IMPACT of CT on OS (all substages)!

No distinction between stage IC1 and IC2/3

Oseledchyk et al, Ann Oncol 2018

ESMO CLINICAL PRACTICE GUIDELINE 2023

Management of early stage ovarian cancer (FIGO I-II)

Recommendations

 The benefit of adjuvant ChT is uncertain and can be considered as optional [III, C] for:
 LGSC stage IB-IC
 CCC stage IA-IC1

HistologiesStage IAStage IB/C1Stage IC2-3Stage IIAClear cellOption*Option*YesYes

* Consider no adjuvant chemotherapy only for patients with complete surgical staging

Gonzalez-Martin A et al., Ann Oncol . 2023 Oct;34(10):833-848

ENDOMETRIOID OVARIAN CANCER

EARLY STAGE ENDOMETRIOID OVARIAN CANCER: PROGNOSIS

SEER database

- n = 3552 stage | EEOC
- o 45% adjuv. CHT

Oseledchyk A et al., Annals of Oncology 28: 2985–2993, 2017

EARLY STAGE ENDOMETRIOID OVARIAN CANCER Role of Adjuvant Chemotherapy

Oseledchyk A et al., Annals of Oncology 28: 2985–2993, 2017

Why might the genomics of endometrioid OC be relevant?

ARTICLE

https://doi.org/10.1038/s41467-020-18819-5

OPEN

Molecular stratification of endometrioid ovarian carcinoma predicts clinical outcome

Robert L. Hollis ^{1,5}, John P. Thomson^{1,5}, Barbara Stanley^{1,5}, Michael Churchman¹, Alison M. Meynert², Tzyvia Rye¹, Clare Bartos¹, Yasushi lida^{1,3}, Ian Croy¹, Melanie Mackean⁴, Fiona Nussey⁴, Aikou Okamoto³, Colin A. Semple ^[0] ², Charlie Gourley ^[0] ^{1,6} & C. Simon Herrington ^[0] ^{1,6} [⊠]

Endometrial Cancer Molecular Risk Stratification is Equally Prognostic for Endometrioid Ovarian Carcinoma

Check for updates

Pauline Krämer (); Aline Talhouk (); Mary Anne Brett; Derek S. Chiu; Evan S. Cairns (); Daniëlla A. Scheunhage;

https://doi.org/10.1038/s41467-020-18819-5

-5 OPEN

Molecular stratification of endometrioid ovarian carcinoma predicts clinical outcome

Robert L. Hollis ^{1,5}, John P. Thomson^{1,5}, Barbara Stanley^{1,5}, Michael Churchman¹, Alison M. Meynert², Tzyvia Rye¹, Clare Bartos¹, Yasushi Iida^{1,3}, Ian Croy¹, Melanie Mackean⁴, Fiona Nussey⁴, Aikou Okamoto³, Colin A. Semple ², Charlie Gourley ^{1,6} & C. Simon Herrington ^{1,6}

Endometrioid OC segregated into 3 groups based on CTNNB1 and TP53 mutational status

Fig. 2 Unsupervised clustering of endometrioid ovarian carcinomas by patterns of mutation. Product-moment correlation scores between

Nature Communication | (2020) 11:4995

Endometrial Cancer Molecular Risk Stratification is Equally Prognostic for Endometrioid Ovarian Carcinoma

Pauline Krämer (); Aline Talhouk (); Mary Anne Brett; Derek S. Chiu; Evan S. Cairns (); Daniëlla A. Scheunhage;

Molecular Classification of Endometrial Cancer Applied to Endometrioid Ovarian Cancer International Series (n=533)

Clin Cancer Res (2020) 26 (20): 5400–5410

Molecular classification might complement histopathology

- → risk stratification
- → Identification of targets & Lynch Syndrom

Recommendations

ESMO CLINICAL PRACTICE GUIDELINE 2023

Management of early stage ovarian cancer (FIGO I-II)

- The benefit of adjuvant ChT is uncertain and can be considered as optional [III, C] for:
- o LGSC stage IB-IC
- o CCC stage IA-IC1
- o Low-grade EC stage IB-IC
- o Expansile MC stage IC
- o Infiltrative MC stage IA
- Adjuvant ChT is not recommended in completely staged patients with LGSC stage IA, low-grade EC stage IA or expansile MC stage IA-IB [II, E].

Histologies	Stage IA	Stage IB/C1	Stage IC2-3	Stage IIA
high-grade Endometrioid (G3)	Yes	Yes	Yes	Yes
Low-grade Endometrioid (G1/2)	Νο	Option*	Yes	Yes

Gonzalez-Martin A et al., Ann Oncol . 2023 Oct;34(10):833-848

MUCINOUS OVARIAN CANCER

Figure 1. Stages in the Progression of Mucinous Ovarian Tumors.

Mucinous ovarian tumors develop on a continuum from benign epithelium to preinvasive (borderline) carcinoma to mucinous carcinoma. *KRAS* mutations are an early event, whereas other oncogenic alterations (*HER2* amplifications or *TP53* mutations) may be acquired later in the course of malignant transformation.

The NEW ENGLAND JOURNAL of MEDICINE

REVIEW ARTICLE

Dan L. Longo, M.D., Editor

Mucinous Ovarian Carcinoma

Philippe Morice, M.D., Ph.D., Sebastien Gouy, M.D., Ph.D., and Alexandra Leary, M.D., Ph.D.

EARLY STAGE MUCINOUS OVARIAN CANCER Netherland Cohort 2002-2012 (n=915)

Variable	G1 MOC n (%)	G2 MOC n (%)	G3 MOC n (%)	MOC Grade unspecifie n (%)
Number of patients	190 (44.6)	115 (27.0)	22 (5.3)	99 (23.2)
LNM	4 (2.1)	1 (0.9)	3 (13.6)	0

van Baal et al., BJOG 2016

Expansile vs infiltrative

Primary invasive mucinous ovarian carcinoma of the intestinal type: Importance of the expansile versus infiltrative type in predicting recurrence and lymph node metastases

K. Muyldermans ^a · Ph. Moerman ^b · F. Amant ^a · K. Leunen ^a · P. Neven ^a · I. Vergote $\stackrel{\circ}{\sim}$ ^a

	1	
	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	3	(A) (E)
29 19	Sta Die.	2.1.
A CAN BANK		12 - 2 - 2

Overview of the literature comparing mucinous epithelial ovarian carcinoma (mEOC) of the expansile versus infiltrative type in relation to FIGO stage and recurrence^{*}.

References	п	Median follow-up (years)	Expansile (recurrence)		Infiltrative (recurrence)	
			Stage I	Stage II–IV	Stage I	Stage II–IV
Hoerl and Hart ⁴	18	10	_	_	14 (2)	4 (4)
Riopel et al. ⁶	5	2.5	4 (0)	1 (1)	-	_
Lee and Scully ¹	21	5	10 (0)	-	5 (1)	6 (5)
Rodriguez and Prat ⁵	26	5.6	11 (0)	-	9 (3)	6 (6)
Our series	44	5.4	21 (0)	2 (2)	12 (2)	9 (7)

K. Muyldermans et al. EJC (2013) 1600–1608

Characteristics and Prognosis of Stage I Ovarian Mucinous Tumors According to Expansile or Infiltrative Type

Sebastien Gouy, MD, PhD, * Marine Saidani, MD, * Amandine Maulard, MD, * Slim Bach-Hamba, MD, †

Gouy et al., IJGC Volume 28, Number 3, March 2018

Adjuvant chemotherapy is not associated with a survival benefit for patients with early stage mucinous ovarian carcinoma

Dimitrios Nasioudis $\stackrel{\circ}{\sim}$ 🖾 \cdot Ashley F. Haggerty \cdot Robert L. Giuntoli, II \cdot ... \cdot Mark A. Morgan \cdot Emily M. Ko \cdot Nawar A. Latif

US National Cancer Database 2004 – 2014 N=4811 30.9% adjuvant chemotherapy 20.2% for stage IA/B 60.2% for stage IC

D. Nasioudis et al. / Gynecologic Oncology 154 (2019) 302–307

ESMO CLINICAL PRACTICE GUIDELINE 2023

Management of early stage ovarian cancer (FIGO I-II)

Recommendations

- The benefit of adjuvant ChT is uncertain and can be considered as optional [III, C] for:
 - o LGSC stage IB-IC
 - o CCC stage IA-IC1
 - o Low-grade EC stage IB-IC
 - o Expansile MC stage IC
 - o Infiltrative MC stage IA
- Adjuvant ChT is not recommended in completely staged patients with LGSC stage IA, low-grade EC stage IA or expansile MC stage IA-IB [II, E].

Histologies	Stage IA	Stage IB/C1	Stage IC2-3	Stage IIA
Expansile Mucinous (G1/2)	No	Option*	Option*	Yes
Infiltrative Mucinous (G3)	Option*	Yes	Yes	Yes

Gonzalez-Martin A et al., Ann Oncol . 2023 Oct;34(10):833-848

LOW GRADE SEROUS OVARIAN CANCER

LOW GRADE SEROUS OVARIAN CANCER

- Low-grade serous carcinoma (LGSC) is rare subtype that accounts for ~ 10% of serous carcinomas of the ovary/peritoneum
- Relative to high-grade serous carcinoma, LGSC characterized by:
 - ✓ Young age at diagnosis
 - ✓ Chemo resistance
 - ✓ Aberrations within the MAP kinase signaling pathway (BRAF/KRAS/NRAF)
 - ✓ Prolonged overall survival
- IA grade I (confirmed by central review) & complete staging, no adjuvant therapy (*Young et al, NEJM 1990*)
- Question for IC2 or IC3 but no enthusiasm for CT : a place for HT ?

ESMO CLINICAL PRACTICE GUIDELINE 2023

Management of early stage ovarian cancer (FIGO I-II)

Recommendations

- The benefit of adjuvant ChT is uncertain and can be considered as optional [III, C] for:
- o LGSC stage IB-IC
- o CCC stage IA-IC1
- o Low-grade EC stage IB-IC
- o Expansile MC stage IC
- o Infiltrative MC stage IA
- Adjuvant ChT is not recommended in completely staged patients with LGSC stage IA, low-grade EC stage IA or expansile MC stage IA-IB [II, E].

Histologies	Stage IA	Stage IB/C1	Stage IC2-3	Stage IIA
LGSOC	No	Option*	Option*	Yes

Gonzalez-Martin A et al., Ann Oncol . 2023 Oct;34(10):833-848

2025: NOVITÀ NEL TRATTAMENTO Delle neoplasie ginecologiche

Grazie