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Machine memory
In 1982, Hopfield, a theoretical biologist with a background in 
physics, came up with a network that described connections 
between virtual neurons as physical forces1..

Optimizing the synergy between physics and machine learning. Nat Mach Intell 3, 925 (2021). 
https://doi.org/10.1038/s42256-021-00416-w; Jumper, J. et al. Nature 596, 583–589 (2021).

https://www.nature.com/articles/s42256-021-00416-w
https://www.nature.com/articles/s42256-021-00416-w
https://www.nature.com/articles/s42256-021-00416-w
https://www.nature.com/articles/s42256-021-00416-w
https://www.nature.com/articles/d41586-024-03213-8#ref-CR1
https://doi.org/10.1038/s42256-021-00416-w


What AI Can Do?

2. discover new patterns and 

biomarkers

1. use different data modalities, 

especially images

3. drive new wet experiments

Prelaj A, et al. Annals of Oncology 2023
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IMMUNE BIOMARKER DISCOVERY WITH AI: Example 

Arsela Prelaj

Patients receiving Dato-DXd who were TROP2 QCS-

NMR+ had a higher ORR and longer PFS compared with 

those who were TROP2 QCS-NMR–

WCLC 2024, Garassino et al.



AI-based DECISION SUPPORT SYSTEM

FROM RESEARCH TO CLINIC
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By Michael Eisenstein Clinical Decision Making With 

Ai For Treatment Selection



Goal: Develop a Data storage and Elaboration Platform (DESP) by 

integrating  Real world and multiomics data in NSCLC patients treated with immunotherapy with the 

aim to produce a clinical decision making tool

10M Euros Grant

THE I3LUNG PROJECT - OVERVIEW

Prelaj, A., et al., The EU-funded I3LUNG Project: Integrative Science, Intelligent Data Platform for Individualized LUNG Cancer Care With Immunotherapy. Clinical lung cancer, 2023. 24(4): p. 381-387. 



2000 RW prospective patient’s cohort

200 OMICs prospective patient’s cohort

2000 RW retrospective patient’s cohort

Multimodal 
and 
Multiomics AI
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APP 
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Retrospective and Prospective

N=2188 patients

www.i3lung.eu

I3LUNG: PATIENTS ENROLLMENT, MAY 2024
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STK11+KEAP1+

Anti-CTLA4 abrogate 

resistance to PD(L)1 

inhibitors
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Papers under submission: PDSS and IPDAS tools
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STANDARD AI VS FOUNDATION MODELS

MOVING FROM PREDICTIVE AI TO GENERATIVE AI

• Using task specific – AI 

• Using FM to extract 
meaningful information

• Predict the outcome 

Predictive 
based 

MODELS

• Using LLMs and FMs 
to generate decisions

• Create synthetic data 
and images

Generative 
based 

MODELS



LARGE LANGUAGE MODELS

FOUNDATION MODELS



Generative AI exists because of the Transformer

Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

Google Brain 2017



Autonomous AI x CDM



MAXIMIZING DATA usage improving technology

FOUNDATION MODELS



What the F. Models doeas with self-supervized learning

Split into observed X and Hidden 

(y)

Predict Hidden (Y) from observed 

(X)

Extract latent representations

Q&A chatbots

Object recognition

Imaging-to-text

Outcomes prediction

Large 

amount of  

unlabeled 

data 
EHR data

Radiological 

images

Text data

Digital Pathology

OMICs

Blood

Specialized 

models

Feature 

extraction

Image 

segmentati

on

Clinical 

decision 

making

Live 

monitoring



Xu, H., Usuyama, N., Bagga, J. et al. A whole-slide foundation model for digital pathology from real-world data. Nature 630, 181–188 (2024). https://doi.org/10.1038/s41586-024-07441-w

FM for digital pathology: 
At WS level

Whole-Slide Modelling: Prov-GigaPath overcomes 

subsampling limitations by training on 1.3 billion image tiles 

from 171,000 slides, preserving full slide context.

State-of-the-Art Performance: Achieves top results in 25 

of 26 tasks, with significant improvements in 18 tasks, 

through large-scale pretraining.

AI-Powered Innovation: Uses real-world data from 30,000 

patients and 31 tissue types, setting a new standard in 

digital pathology with vision–language models.



FM for single-cell multi-omics

The model scGPT is generatively 

pretrained on large-scale scRNA-

seq data from cell atlases. 

For downstream applications, the 

pretrained model

parameters can be fine-tuned on new 

data. 

They applied scGPT in a variety of 

tasks including cell type annotation, 

batch correction, multi-omic

integration, genetic

perturbation prediction and gene 

network inference.

Cui, Haotian, et al. Nature Methods 2024



Foundation Model for cancer 

imaging biomarkers

Pai, Suraj, et al. Nature machine intelligence, 2024; https://github.com/Google-Health/imaging-

research/tree/master/ct-foundation%0A

a. Foundation model pre-training

b. Clinical application of the Foundation model   

(3 use cases)

c. Foundation model implementation (2 

approaches)

d. Performance evaluation



BiomedGPT handles multimodal

inputs and performs diverse 

downstream tasks.

The expected form of output for 

each task is determined by feeding

the specific instruction to the 

model. 

A generalist vision language foundation model

Use-

cases



Multimodal generative AI pathchat – Copilot 
pathchat

Lu, Ming Y., et al. "A Multimodal Generative AI Copilot for Human Pathology." Nature (2024): 1-3.

PathChat flexibility: 

• Multi-choice questions (accuracy 

image only 78.1%, when provided 

with clinical context 89.5%)

• answering open ended questions 

(accuracy 78.7%)

• interactive multi-turn conversation 

potentially serve as a 

consultant for human-in-

the-loop differential 

diagnosis





HOW we CAN BETTER EXPLAIN WITH 
FOUNDATION MODELS



MULTIOMIC- FM-based Explainability in NSCLC patients
treated with IO first line (PEOPLE study)



WE NEED TO BUILD DATA FOR AI



2020→ APOLLO 11

FEDERATED NETWORK

https://apollo11.network/

2016 → APOLLO 

https://apollo11.network/


BIOData Driven Model In Lung Cancer

• RWD/NGS data &

• Image/Digital path collection

• Decentralized Platform

• Biobanking material

• Federated Learning (validation of 
Swarm Learning architecture)

• AI analysis

48 cancer 

centres

https://apollo11.network/

Prelaj A, et al. APOLLO 11. Consortium in Advanced Lung Cancer Patients Treated With Innovative Therapies: Integration of Real-World Data and Translational Research. 
Clin Lung Cancer. 2024 Mar;

How we can build BIG DATA: Apollo 11 use case

https://apollo11.network/


&

Evaluation of the influence of longitudinal interventional

therapies: e.g., Steroids, antibiotics

PEOPLE interventional prospective trial: 2 host vs 2 tumor time-series

biomarkers to explore secondary resistance in IO first-line NSCLC patients

treated with immunotherapy



TRAINING AND EDUCTION 



1. AI Principles: Understanding 

methodology, feature selection, model 

validation, and bias management.

Interpreting 

2. AI Data: Oncologists need to critically 

assess AI outputs to avoid over-reliance.

3. AI-Driven Research: Oncologists require 

advanced skills to collaborate with data 

scientists on AI models.

4. Patient-Centric AI: Oncologists should 

guide patients using AI tools for self-

assessment and health information.

AI is FOUNDAMENTAL 



Hibrid Event organized by:
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AI CONGRESS

Endorsed by:
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FIRST ESMO AI CONFERENCE

Arsela Prelaj
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RWD: AUTOMATIC QUALITY CHECK BUILDING
• Data cleaning and automatic quality check coding

www.i3lung.eu

2 independent groups (2 oncologists each) blind feature selection

extracted from eCRF 🡪 hypothesis-driven selection

Review of discordancies by 1 experienced medical oncologist

1. Free-text inputs: all misspellings corrected

2. Correct  date inconsistencies

3. Remove inconsistencies from laboratory values and physical parameters

(…waiting for automated data curation development…)

Hot-encoding, new features , e.g.: 1) patient’s age at different time points; 

2) DFI, Time between treatments; 3) number of concomitant diseases, 4) 

patient therapies, and 5) allergies, 6) body mass index (BMI); 7) composite 

blood cell counts (NLR); 8) genomic pathways

1. Descriptive features 

2. Features for model training



Database query
&
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reports
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INT DWH

RWD/clinical data.

Technique, dose, 
nr of lesions, etc.

TNM, nr lymph nodes, 
gene alterations, etc.

INFORMATION EXTRACTION EVALUATION

TXT

PDF

CSV

Experimental design

❑ Information to extract
❑ Prompt engineering
❑ Output structure
❑ Model

Large Language Models
processing

Model output: 
structured data

Model input: 
unstructured data

Manual data-entry

Ground thruth LLM prediction
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INFORMATION EXTRACTION PIPELINE

Multimodal data 
collection

REAL-WORLD SCENARIO
LLMs for RWD structure

USING LLAMA

GPT4



GENERALIZABILITY OF THE MODEL

FAIRNESS AUDITING



Harvard Medical School, Harvard Bioinformatics, Harvard Data Science,  MIT



www.i3lung.eu

Preliminary bias analysis

Retrospective (N=2190) Prospective (until 15 February 2024) N=171 Retrospective

Sex Sex
Ethnicity

CenterCenter



Comparison of multimodal AI for image analysis

Kaczmarczyk, Robert, et al. npj Digital Medicine 2024.

AI has potential in medical diagnostics but requires careful evaluation and 

ethical considerations before deployment in clinical settings.

945 NEJM Image Challenge cases.

Nine multimodal AI models, were evaluated using 

a standardized prompt to answer the medical 

image challenges.

Anthropic’s Claude 3 models achieved the highest 

accuracy (58.8% to 59.8%).

The study highlights issues such as AI models’ 

selectivity in answering questions, the need for 

regulatory oversight, and the importance of 

transparency in AI decision-making.



From Research to Clinic: Perspective

Now /Next Future

Genomics NGS
Whole genome 

exome sequencing

RNA sequencing

Future (2035)

Laboratory exams

Blood     

exams

Medical records 

Demographic data

Clinical data

Radiomics
Data from:

CT and PET

Liquid biopsy

analysis of non-solid 

biological tissue

EHR
Electronic health 

recorders

Immune cell profiling
a snapshot of a state of 

immune health

Standard AI

Foundation 

models

Laboratory exams

Blood     

exams

Medical records 

Demographic data

Clinical data

Single cell analysis
cell-specific genetic 

information

Digital pathology

Digitized tissue 

Whole slide images

EHR
Electronic health 

recorders

Genomics NGS
Whole genome 

exome sequencing

RNA sequencing

Radiomics
Data from:

CT and PET

Digital pathology

Digitized tissue 
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LSD
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Quantum
Standard 

Statistics
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