

Congresso Nazionale

CARCINOMA DEL POLMONE: QUALI NOVITÀ NEL 2024?

▼ EDIZIONE


28 OTTOBRE 2024

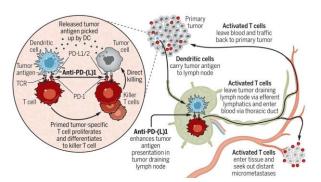
VERONA

Hotel Leon D'Oro

Responsabile Scientifico
STEFANIA GORI

Immunoterapia neoadiuvante delle forme operabili: dialogo tra clinico e metodologo

Ettore D'ARGENTO Giovanni L. PAPPAGALLO


CARCINOMA POLMONARE: QUALI NOVITÀ NEL 2022?

20 Maggio 2022

IRCCS "Sacro Cuore - Don Calabria" Negrar di Valpolicella Sala Perez

Coordinatore Scientifico: Dr.ssa Stefania Gori

Enhancement of systemic antitumor T cell immunity after neoadjuvant PD-1 blockade

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Neoadjuvant PD-1 Blockade in Resectable Lung Cancer

P.M. Forde, J.E. Chaft, K.N. Smith, V. Anagnostou, T.R. Cottrell, M.D. Hellmann, M. Zahurak, S.C. Yang, D.R. Jones, S. Broderick, R.J. Battafarano, M.J. Velez, N. Rekhtman, Z. Olah, J. Naidoo, K.A. Marrone, F. Verde, H. Guo, J. Zhang, J.X. Caushi, H.Y. Chan, J.-W. Sidhom, R.B. Scharpf, J. White, E. Gabrielson, H. Wang, C.L. Rosner, V. Rusch, J.D. Wolchok, T. Merghoub, J.M. Taube, V.E. Velculescu, S.L. Topalian, J.R. Brahmer, and D.M. Pardoll

Surgical and Clinical Outcomes With Neoadjuvant Atezolizumab in Resectable Stage IB-IIIB NSCLC: LCMC3 Trial Primary Analysis

Jay M. Lee, I Jamie Chaft, Alan Nicholas, G. Alexander Patterson, Saiama N. Wagar, Eric M. Toloza, Eric Haura, Dan J. Raz, Karen I. Reckamp, Todort E. Merritt, Powight Owen, David J. Finley, J Ciaran J. McNamee, Ustin D. Blasberg, Edward B. Garon, John D. Mitchell, Robert C. Doebele, Frank Baciewicz, 19 Misako Nagasaka, 44 Harvey I. Pass, 18 Katja Schulze, See Phan, Ann Johnson, Paul A. Bunn, 18 Bruce E. Johnson, 46 Mark G. Kris, 20 David J. Kwatkowski, 19 Jancolo I. Wistubar, David J. Kwatkowski, 19 Jancolo I. Wistubar, David P. Carbone, 3 Valerie W. Rusch?

ARTICLES

medicine

Check for upde

Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial

Tina Cascone ¹⁰², William N. William Jri¹⁰, Annikka Weissferdt¹², Chesk H. Leung*, Heather Y. Lin*, Apar Patzer¹⁰, Wyna C. B. Godop*, Berth W. Carter¹, Lorenzo Federico¹, Alkandre Reubend¹), Md Adeid Wadud Khand¹, Hitchi Delima ¹⁰⁴, Alcjandro Francisco-Cuut*, Edwin R. Parra B*, Luisa M. Solis B*, Junya Fujimoto¹, Hal T. Tran', Neda Kalibori, Frank V. Fossella¹, Frank E. Mott*, Anne S. Taso*, George Blumenschein Jr*, Xiuning Let J. Jianjun Zhang B*, Ferdinandos Skoulidis*, Jonatha M. Kurie', Mehme Altan', Charles Luf, Bonnie S. Gilsson', Lauren Averett Byers B*, Yasir V. Elamini, Reza J. Mehran', David C. Rice', Garrett Walsh¹, Wappe L. Hofstetter¹, Jack R. Rothb¹, Mara B. Antonoff*, Human Kadara*, Cara Haymaker B*, Chantale Bernatchez*, Asdim J. Ajami*, Robert B. Jange's, Padmanee Shamas ¹⁰³, Janes R. Hogmond', Jane N. Heymand, John V. Heymand, Julian O. Hajmi*, John V. Heymand, Julian A. Japin's, John V. Heymand, Julian A. Japin's, John V. Heymand, Julian A. Japin's, John V. Heymand, Julian's Alexander J. Janes R. Lee B*, Don L. Gilbons B*, Ara A. Vaporciyan', John V. Heymand, Julian's Alexander J. Janes R. Lee B*, Don L. Gilbons B*, Ara A. Vaporciyan', John V. Heymand, Julian's Heymand

Ipilimumab improves clinical outcomes when combined with nivolumab in metastatic non-small cell lung cancer (NSCLC), but

Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (NADIM): an open-label, multicentre, single-arm, phase 2 trial

Mariano Provencio, Ernest Nadal, Amelia Insa, Maria Rosario García-Campela, Joaquín Casal-Rubio, Manuel Dòmine, Margarita Majem, Delvys Rodriguez-Abreu, Alex Martinez-Marti, Javier De Castro Carpeño, Manuel Coba, Guillermo López Vivanco, Edel Del Barco, Reyes Benabé Caro, Nuria Viñolas, Isidoro Barneto Aranda, Santiago Viteri, Eva Pereira, Ana Royuela, Marta Casarrubios, Glara Salas Antón, Edwin R Parra, Iapacio Wistuba, Virginia Calvo, Raquel Laza-Eriviesca, Atocha Romera, Bartomeu Massuti, Alberto Cruz-Bermildez

Nivolumab + platinum-doublet chemotherapy vs chemotherapy as neoadjuvant treatment for resectable (IB-IIIA) non-small cell lung cancer: event-free survival results from the phase 3 CheckMate 816 trial

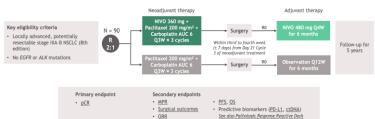
Nicolas Girard, ¹ Jonathan Spicer, ² Mariano Provencio, ³ Shun Lu, ⁴ Stephen Broderick, ⁵ Mark M. Awad, ⁶ Tetsuya Mitsudomi, ⁷ Keith Kerr, ⁸ Julie Brahmer, ⁵ Scott J. Swanson, ⁶ Enriqueta Felip, ⁹ Changli Wang, ¹⁰ Gene B. Saylors, ¹¹ Ke-Neng Chen, ¹² Fumihiro Tanaka, ¹³ Moishe Liberman, ¹⁴ Cecile Dorange, ¹⁵ Javed Mahmood, ¹⁵ Junliang Cai, ¹⁵ Patrick M. Forde⁵

Institut du Thorax Curie-Montsouris, Institut Curie, Paris, France; McGill University Health Center, Montreal, Québec, Canada; Hospital Universitario Puerta de Hierro, Madrid, Spain; Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, Chian; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Kimmel Cancer Center, Baltimore, MD, USA; Obana-Farber Cancer Institute, Boston, MA, USA; Midal University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan; Aberdeen Royal Infirmary, Aberdeen, UK; Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain; Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Tianjin China; Chin

Presentation Number CT012 (D: 1506-IT-2200031: EXP: 12/04/2024

Congresso Nazionale sul carcinoma del polmone

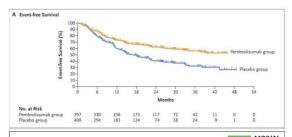
CARCINOMA DEL POLMONE: QUALI NOVITÀ NEL 2023?

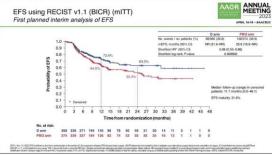

9 OTTOBRE 2023 VERONA Hotel Leon D'Oro

Responsabile scientifico STEFANIA GORI

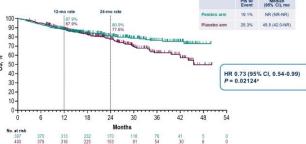
NADIM II trial: study design

 NADIM II was a randomized, phase 2, open-label study that evaluated NIVO + chemo vs chemo in resectable stage IIIA-B NSCLC


LUC, area under the curve; chemo, chemotherapy; ctDNA, circulating tumor DNA; MPR, major pathologic response; NNO, nivolumab; NSCLC, non-small cell lung cancer; ORR, objective response rate; Sp, overall survival; pKR, pathologic complete response; PD-L1, programmed death ligand 1; PPS, progression-free survival; R, randomized. Yomenco M et al. Only persentation at New Conference on Lung Loncer (MCLE), August 6-), 2002; Verena, Natrath, Presentation (PDJ). 11.


AEGEAN: EFS

D arm	PBO arm			
98/366 (26.8)	138/374 (36.9)			
NR (31.9-NR)	25.9 (18.9-NR)			
0.68 (0.53-0.88)				
0.003902				
	98/366 (26.8) NR (31.9–NR) 0.68 (0.			


KEYNOTE-671: EFS

	Pts w/ Event	Median (95% CI), mo
Pembro arm	35.0%	NR (34.1-NR)
Placebo arm	51.3%	17.0 (14.3-22.0)

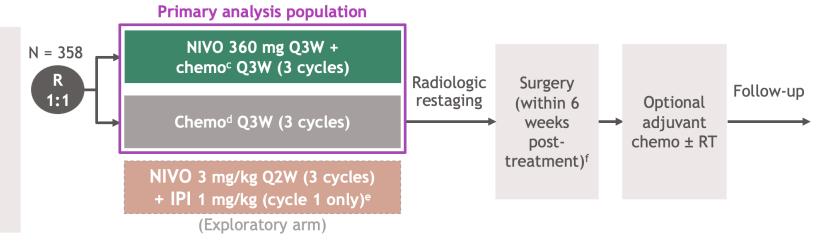
Bristol Myers Squibb Announces Perioperative Regimen of Neoadjuvant Opdivo (nivolumab) and Chemotherapy Followed by Adjuvant Opdivo Significantly Improves Event-Free Survival in Patients with Resectable Non-Small Cell Lung Cancer

09/22/2023

CATEGORY: Corporate/Financial News

CheckMate -77T represents the company's second positive Phase 3 trial with an immunotherapy-based combination for the treatment of non-metastatic non-small cell lung cancer

Neoadjuvant and Adjuvant Treatments for Early Stage Resectable NSCLC: Consensus Recommendations From the International Association for the Study of Lung Cancer


Jonathan D. Spicer, MD, PhD,^a Tina Cascone, MD, PhD,^b Murry W. Wynes, PhD,^c Myung-Ju Ahn, MD, PhD,^d Sanja Dacic, MD, PhD,^e Enriqueta Felip, MD, PhD,^f Patrick M. Forde, MD, PhD,^g Kristin A. Higgins, MD,^h Mark G. Kris, MD,ⁱ Tetsuya Mitsudomi, MD, PhD,^{j,k} Mariano Provencio, MD, PhD,^l Suresh Senan, MD, PhD,^m Benjamin J. Solomon, M.B.B.S., PhD,ⁿ Ming Sound Tsao, MD,^o Masahiro Tsuboi, MD,^p Heather A. Wakelee, MD,^q Yi-Long Wu, MD,^r James Chih-Hsin Yang, MD, PhD,^s Caicun Zhou, MD, PhD,^t David H. Harpole, MD,^u Karen L. Kelly, MD^{c,*}

Checkmate 816: study design

Key eligibility criteria

- Newly diagnosed, resectable, stage IB (≥ 4 cm)-IIIA NSCLC (per TNM 7th edition)
- ECOG PS 0-1
- No known sensitizing EGFR mutations or ALK alterations

Stratified by stage (IB-II vs IIIA), PD-L1a (≥ 1% vs < 1%b), and sex

Primary endpoints

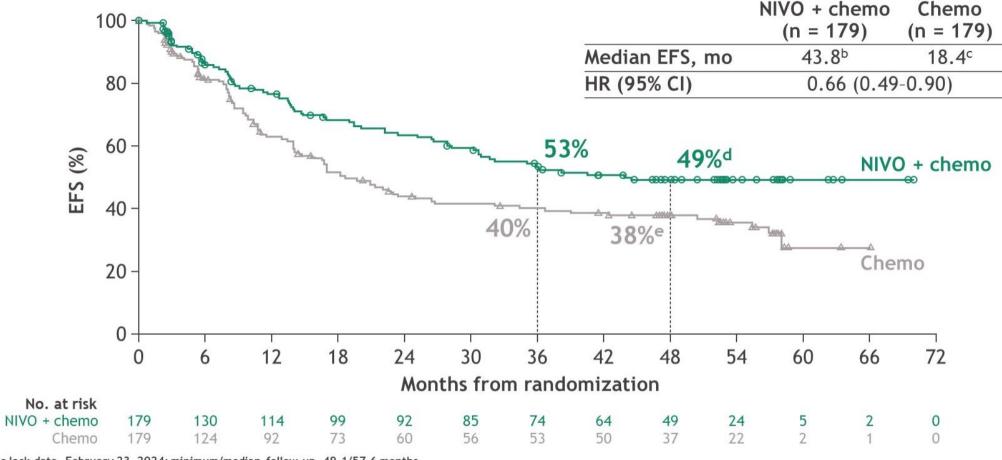
- pCR by BIPR
- EFS by BICR

Secondary endpoints

- MPR by BIPR
- OS
- TTDM

Exploratory endpoints

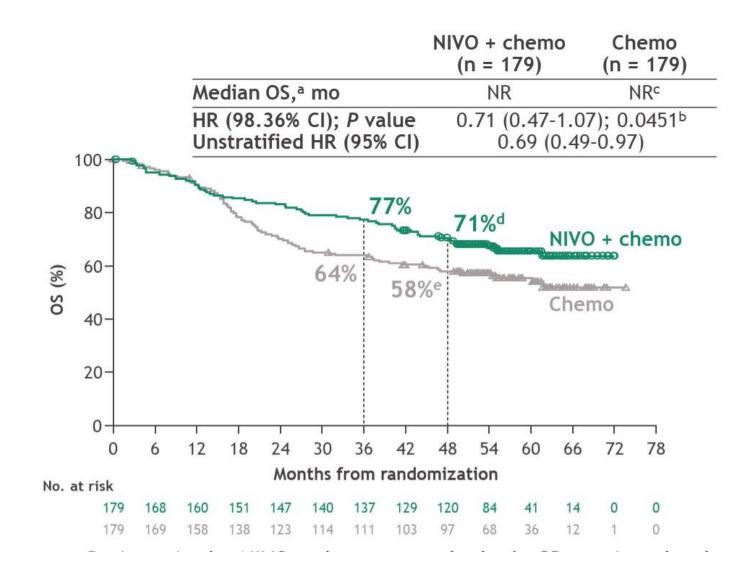
- EFS2
- ORR by BICR
- Predictive biomarkers (<u>PD-L1</u>, TMB, ctDNAg)
- Feasibility of surgery
- Peri- and postoperative surgery-related AEs
- Safety

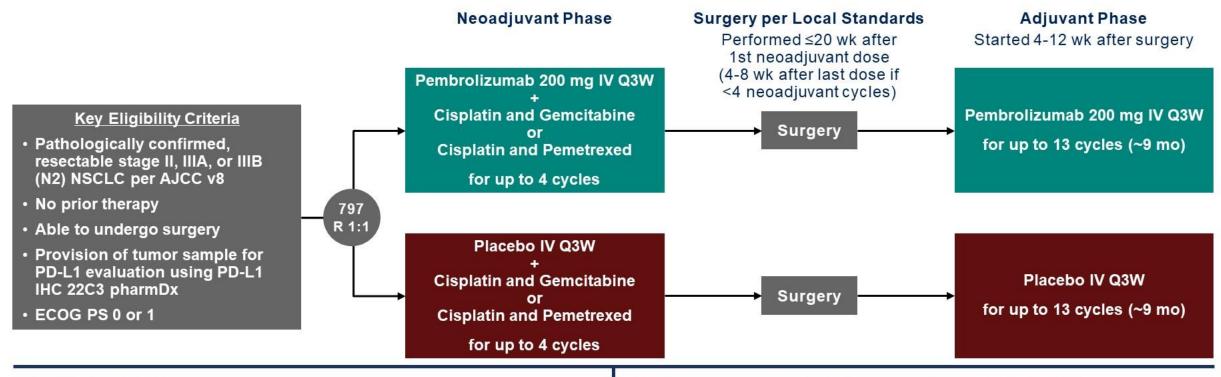

Neoadjuvant nivolumab plus chemotherapy vs chemotherapy in patients with resectable NSCLC: 4-year update from CheckMate 816

<u>Jonathan D. Spicer</u>,¹ Nicolas Girard,² Mariano Provencio Pulla,³ Changli Wang,⁴ Tetsuya Mitsudomi,⁵ Mark M. Awad,⁶ Everett E. Vokes,⁷ Janis M. Taube,⁸ Lorena Lupinacci,⁹ Gene B. Saylors,¹⁰ Fumihiro Tanaka,¹¹ Moishe Liberman,¹² Sung Yong Lee,¹³ Aurelia Alexandru,¹⁴ Manolo D'Arcangelo,¹⁵ Phuong Tran,¹⁶ Javed Mahmood,¹⁶ Vishwanath Gharpure,¹⁶ Apurva Bhingare,¹⁶ Patrick M. Forde⁸

¹McGill University Health Centre, Montreal, Quebec, Canada; ²Institut du Thorax Curie-Montsouris, Institut Curie, Paris, France; ³Hospital Universitario Puerta de Hierro, Madrid, Spain; ⁴Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China; ⁵Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan; ⁶Dana-Farber Cancer Institute, Boston, MA; ⁷University of Chicago Medicine, Chicago, IL; ⁸The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; ⁹Hospital Italiano de Buenos Aires, Buenos Aires, Argentina; ¹⁰Charleston Oncology, Charleston, SC; ¹¹University of Occupational and Environmental Health, Kitakyushu, Japan; ¹²Centre Hospitalier de l'Universite de Montreal, Montreal, Quebec, Canada; ¹³Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; ¹⁴Institutul Oncologic București Prof. Dr. Alexandru Trestioreanu, Bucharest, Romania; ¹⁵Azienda Unita Sanitaria Locale della Romagna, Ravenna, Italy; ¹⁶Bristol Myers Squibb, Princeton, NJ

EFS: 4-year update^a


• In CheckMate 816, neoadjuvant NIVO + chemo significantly improved the primary endpoints of EFS and pCR vs chemo and demonstrated a favorable OS trend in patients with resectable NSCLC^{1,2}

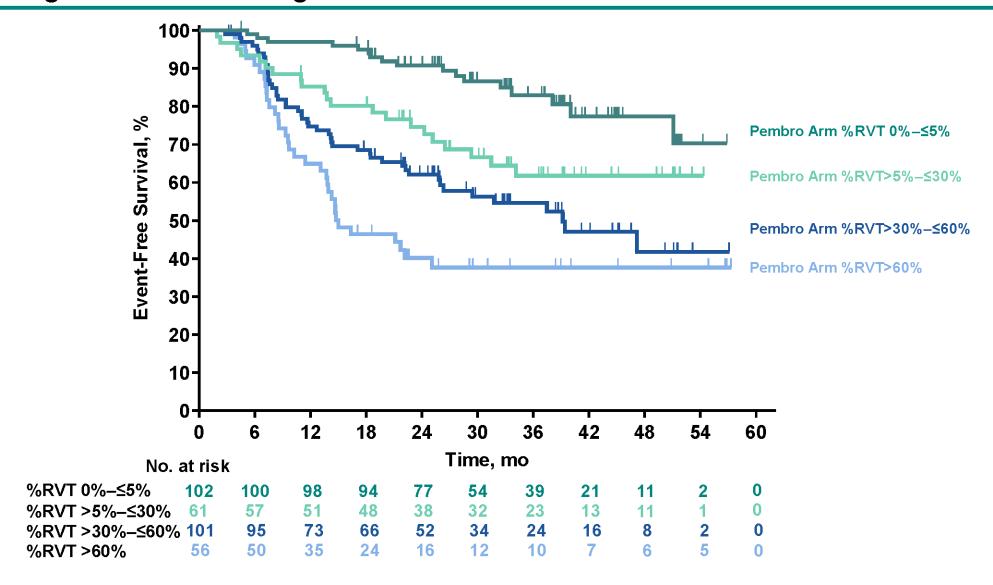

Database lock date, February 23, 2024; minimum/median follow-up, 49.1/57.6 months.

^aExploratory analysis. ^{b-e}95% CI: ^b30.6-NR; ^c14.0-26.7; ^d41-57; ^e30-46. 1. Forde PM, et al. N Engl J Med 2022;386:1973-1985. 2. Forde PM, et al. Oral presentation at European Lung Cancer Congress (ELCC); March 29-April 1, 2023; Copenhagen, Denmark. Presentation 840.

Checkmate 816: OS 4y FU

KEYNOTE-671 Study Design Randomized, Double-Blind, Phase 3 Trial

Stratification Factors

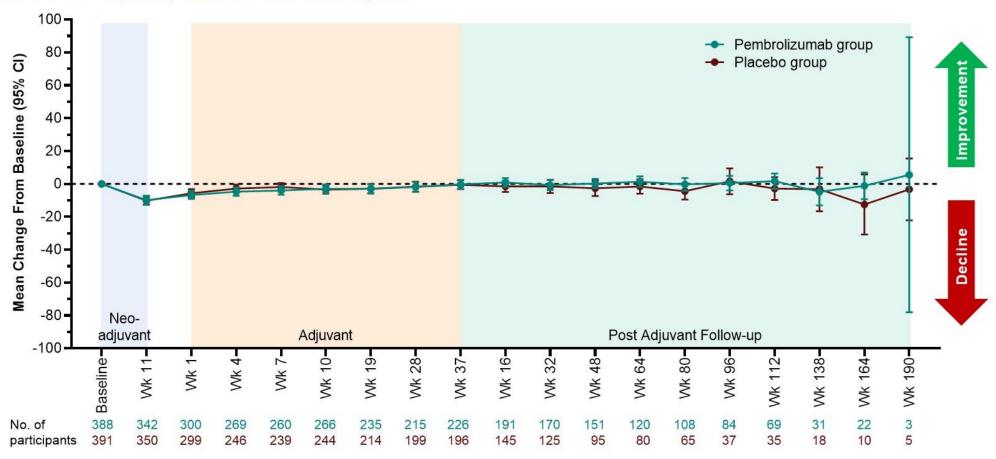

- · Disease stage (II vs III)
- PD-L1 TPSa (<50% vs ≥50%)
- Histology (squamous vs nonsquamous)
- Geographic region (east Asia vs not east Asia)

Dual primary end points: EFS per investigator review and OS

Key secondary end points: mPR and pCR per blinded, independent pathology review, change from baseline in HRQoL in the neoadjuvant and adjuvant phases, and safety

Event-Free Survival

According to %RVT Categorization in the Pembrolizumab Arm

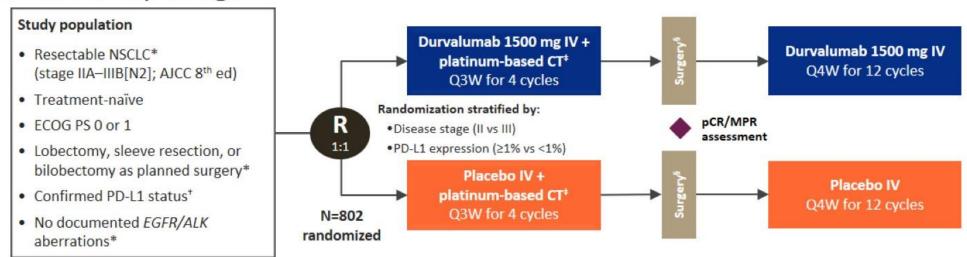


Health-Related Quality of Life Outcomes From the Randomized, Double-Blind Phase 3 KEYNOTE-671 Study of Perioperative Pembrolizumab for Early-Stage NSCLC

Marina C Garassino, Heather Wakelee, Jonathan D Spicer, Moishe Liberman, Terufumi Kato, Masahiro Tsuboi, Se-Hoon Lee, Ke-Neng Chen, Christophe Dooms, Margarita Majem, Ekkehard Eigendorff, Gastón L Martinengo, Olivier Bylicki, Delvys Rodríguez-Abreu, Jamie Chaft, Jing Yang, Ashwini Arunachalam, Josephine M Norquist, Steven M Keller, Shugeng Gao

Presented by Marina C Garassino of the University of Chicago School of Medicine and Biological Sciences, Chicago, IL, USA

Empirical Mean Change From Baseline Over Time EORTC QLQ-C30 GHS/QoL

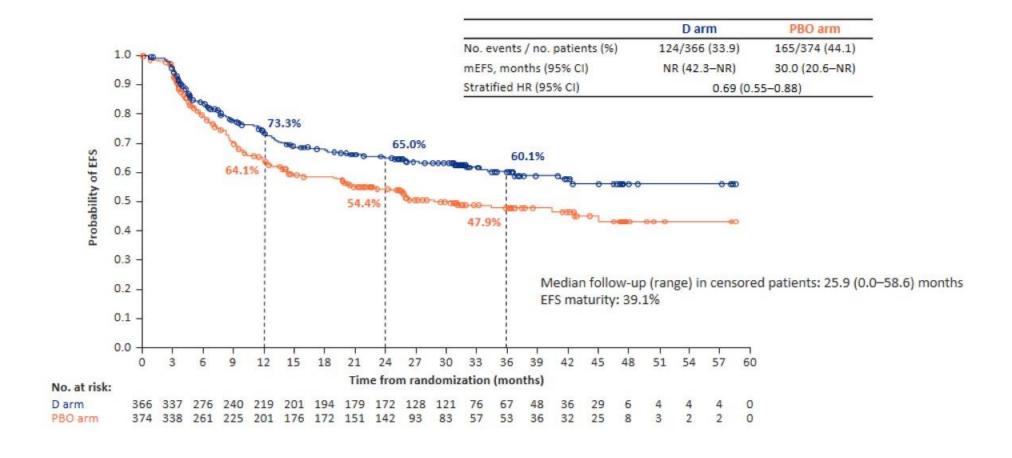

Completion of the QLQ-C30 at baseline and adjuvant week 10 was ≥68.6% in the pembrolizumab group and ≥62.1% in the placebo group; compliance was ≥92.2% and ≥92.9%, respectively. A ≥10-point difference in EORTC QLQ-C30 scales is generally considered clinically relevant. Data cutoff date for IA2: July 10, 2023.

Perioperative Durvalumab for Resectable NSCLC

Updated Outcomes from the Phase 3 AEGEAN Trial

John V. Heymach,¹ David Harpole,² Tetsuya Mitsudomi,³ Janis M. Taube,⁴ Shugeng Gao,⁵
Laszlo Urban,⁶ Jin Hyoung Kang,⁷ Francisco J. Orlandi,⁸ Jeronimo Rodriguez-Cid,⁹ Bartomeu Massuti,¹⁰
Luis Leon Mateos,¹¹ Giulia Pasello,¹² Quincy Chu,¹³ Jaroslaw Kolb-Sielecki,¹⁴ Masao Nakata,¹⁵ Mike Aperghis,¹⁶
Helen Mann,¹⁶ Tamer M. Fouad,¹⁷ Gary J. Doherty,¹⁶ Martin Reck¹⁸

AEGEAN study design

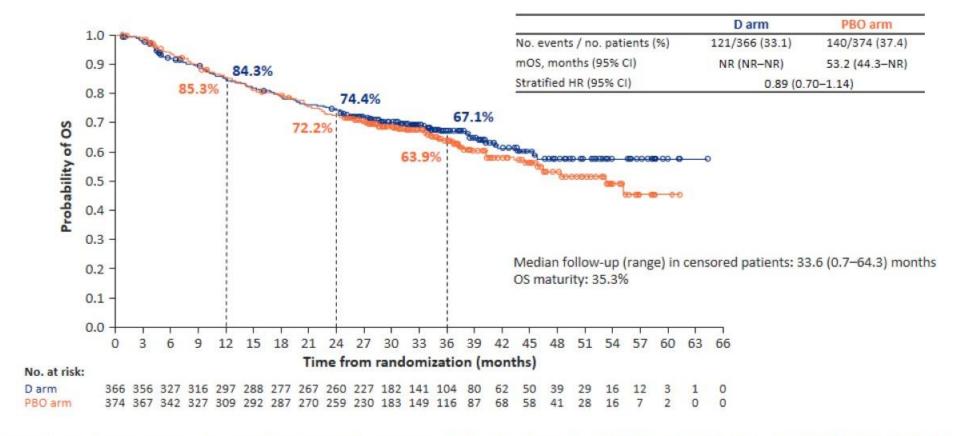

Efficacy analyses were performed in the mITT population (or its resected subpopulation), which excluded patients with documented EGFR/ALK aberrations 1

Primary endpoints: pCR, evaluated centrally (IASLC 2020¹), and EFS per BICR (RECIST v1.1)

Key secondary endpoints: MPR, evaluated centrally (IASLC 20201), DFS per BICR (RECIST v1.1) in the resected subpopulation, and OS

Updated EFS (second planned interim analysis; mITT)

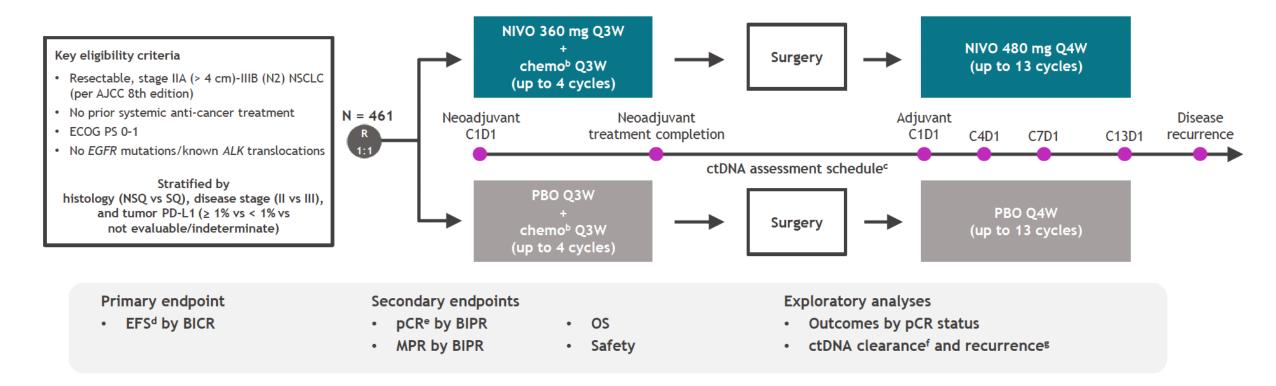
EFS benefit favoring the durvalumab arm was maintained and consistent with that reported previously¹


Updated EFS by subgroup (mITT)

• EFS benefit was maintained across predefined subgroups

			Median EFS,	months (95% CI)						
Subgroup		n	D arm (N=366)	PBO arm (N=374)						HR (95% CI)
All patients		740	NR (42.3-NR)	30.0 (20.6-NR)			⊣ i			0.69 (0.55-0.88
Age at randomization	<65 years	358	NR (NR-NR)	34.4 (19.8-NR)		1				0.69 (0.48-0.97
	≥65 years	382	NR (31.9-NR)	25.9 (15.1-NR)			 }			0.71 (0.52-0.97
Sex	Male	530	NR (41.2-NR)	25.9 (19.8-NR)		•	-			0.66 (0.50-0.88
35000	Female	210	NR (33.2-NR)	40.4 (15.1-NR)		-				0.80 (0.52-1.23
ECOG PS	0	506	NR (42.3-NR)	31.1 (19.5-NR)		1 •	4 1			0.66 (0.50-0.88
	1	234	NR (21.8-NR)	28.6 (18.9-NR)		-				0.79 (0.52-1.20
Race*	Asian	307	NR (42.3-NR)	25.9 (19.5-NR)	H					0.66 (0.45-0.95
	Non-Asian	433	NR (33.2-NR)	31.1 (15.7-NR)			<u>!</u>			0.73 (0.54-0.99
Smoking	Current	190	NR (33.2-NR)	20.4 (8.1-NR)		- 1				0.52 (0.32-0.82
	Former	443	NR (41.2-NR)	30.0 (20.7-NR)		-	H			0.75 (0.56-1.02
	Never	107	NR (13.0-NR)	34.4 (14.7-NR)			-	_		0.88 (0.47-1.61
Histology	Squamous	360	NR (41.2-NR)	40.4 (15.1-NR)		-	-1			0.70 (0.49-0.98
5380	Non-squamous	375	NR (36.6-NR)	28.6 (19.8-NR)		-	!			0.73 (0.53-1.00
Disease stage	Stage II	214	NR (41.2-NR)	NR (34.4-NR)		1				0.82 (0.49-1.34
(AJCC 8th ed.)	Stage IIIA	338	NR (42.3-NR)	25.8 (11.7-45.0)			4			0.60 (0.42-0.84
	Stage IIIB	186	36.6 (12.7-NR)	19.8 (11.7-42.6)		-				0.81 (0.53-1.23
Lymph node station	N2 single	273	NR (NR-NR)	22.8 (13.9-42.6)		-	1			0.58 (0.39-0.85
	N2 multi	74	31.9 (9.3-NR)	12.2 (7.2-NR)		-	1	+		0.78 (0.40-1.49
PD-L1 expression at baseline [†]	TC <1%	247	NR (24.7-NR)	20.6 (14.3-NR)						0.69 (0.46-1.02
Per da central de la central	TC 1-49%	277	NR (31.9-NR)	25.9 (12.3-NR)						0.73 (0.50-1.05
	TC ≥50%	216	NR (41.2-NR)	NR (24.5-NR)		-				0.71 (0.44-1.12
Planned neoadjuvant	Cisplatin	196	NR (NR-NR)	45.0 (13.9-NR)	-		-11			0.58 (0.35-0.93
platinum agent	Carboplatin	544	NR (36.6-NR)	26.2 (20.6-NR)		•				0.75 (0.57-0.97
					0.25	0.5	- !	2	3	

OS (mITT)


Based on 35% maturity, an OS trend favoring the durvalumab arm was observed

Preplanned analysis censoring patients with cause of death due to COVID-19: OS HR = 0.84 (95% CI: 0.66–1.08)

Background and study design

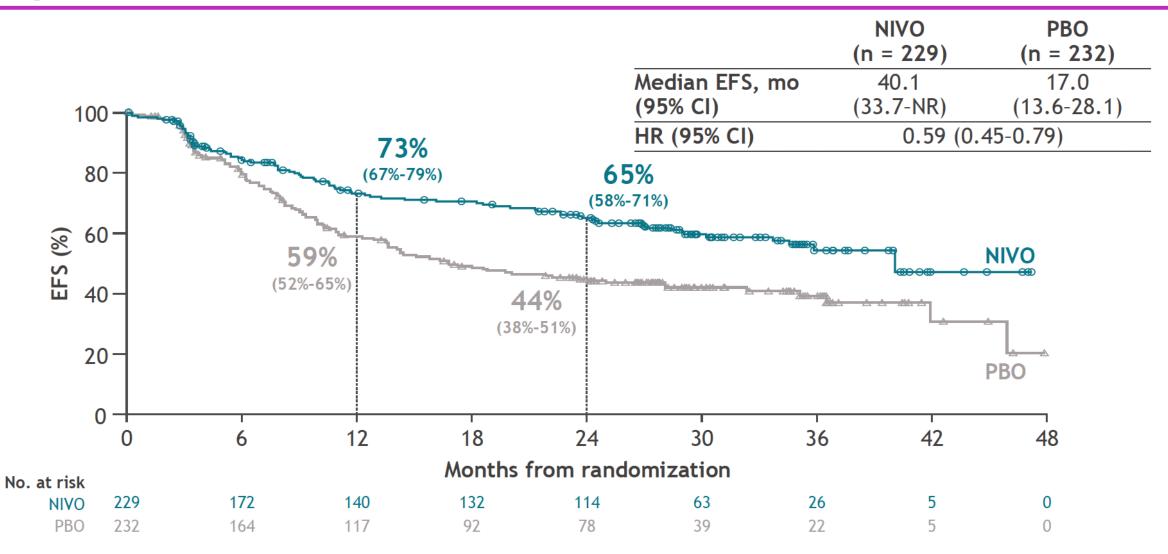
- In the phase 3 CheckMate 77Ta study, perioperative NIVO demonstrated statistically significant and clinically meaningful EFS benefit vs PBO in patients with resectable NSCLC (HR, 0.58; 97.36% CI, 0.42-0.81; P < 0.001); pCR was also improved¹
- Here we report updated clinical outcomes from CheckMate 77T with a median follow-up of 33.3 months, exploratory outcomes by pCR status, and ctDNA analyses

Database lock date: April 26, 2024; median follow-up (range): 33.3 months (23.6-52.1).

aNCT04025879. bNSQ: cisplatin + pemetrexed, carboplatin + pemetrexed, or carboplatin + paclitaxel; SQ: cisplatin + docetaxel or carboplatin + paclitaxel. ctDNA was measured using the Invitae Personalized Cancer Monitoring (tumor-informed) assay. dTime from randomization to any disease progression precluding surgery, abandoned surgery due to unresectability or disease progression, disease progression/recurrence after surgery, progression in patients without surgery, or death due to any cause. on detectable ctDNA at neoadjuvant treatment initiation (C1D1) to no detectable ctDNA at neoadjuvant treatment completion (end of neoadjuvant treatment or prior to definitive surgery). Change from no detectable ctDNA at adjuvant treatment initiation (C1D1) to detectable ctDNA during the post-operative period (adjuvant C4D1, C7D1, or C13D1; disease recurrence). 1. Cascone T, et al. N Engl J Med 2024;390:1756-1769.

ORIGINAL ARTICLE

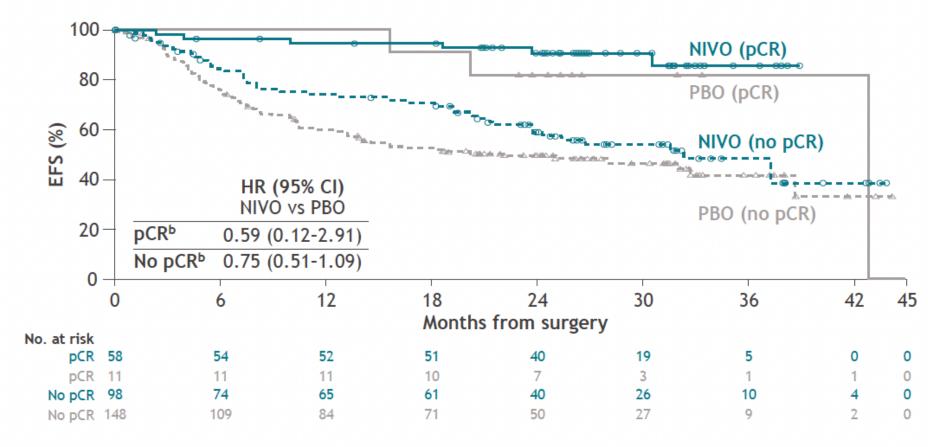
Perioperative Nivolumab in Resectable Lung Cancer


T. Cascone, M.M. Awad, J.D. Spicer, J. He, S. Lu, B. Sepesi, F. Tanaka, J.M. Taube, R. Cornelissen, L. Havel,* N. Karaseva, J. Kuzdzal, L.B. Petruzelka, L. Wu, J.-L. Pujol, H. Ito, T.-E. Ciuleanu, L. de Oliveira Muniz Koch, A. Janssens, A. Alexandru, S. Bohnet, F.V. Moiseyenko, Y. Gao, Y. Watanabe, C. Coronado Erdmann, P. Sathyanarayana, S. Meadows-Shropshire, S.I. Blum, and M. Provencio Pulla, for the CheckMate 77T Investigators†

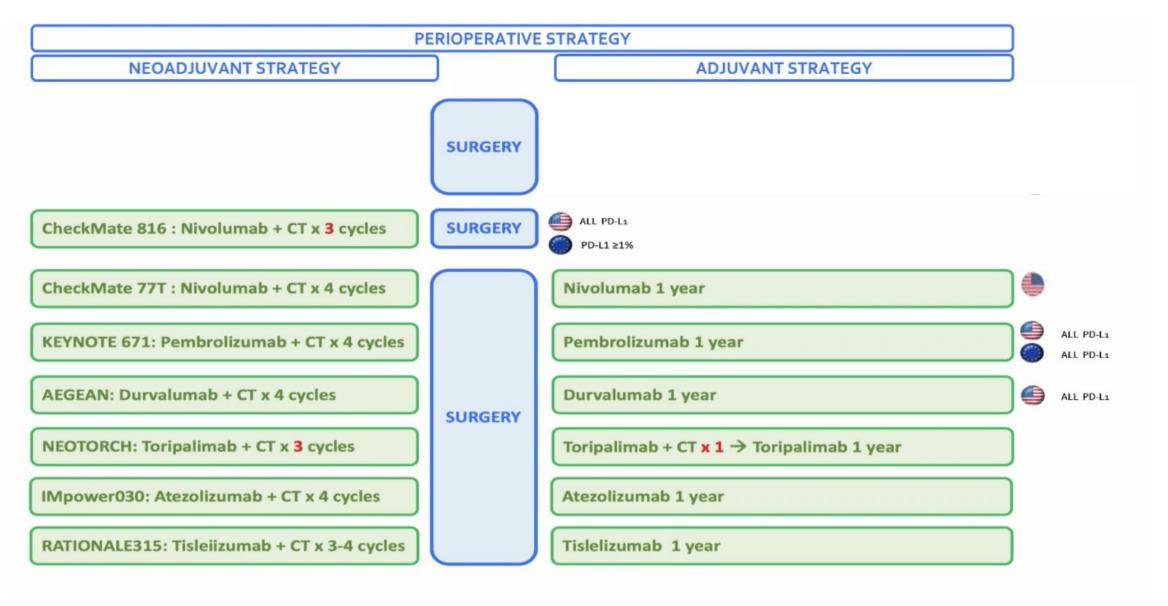
Perioperative nivolumab vs placebo in patients with resectable NSCLC: clinical update from the phase 3 CheckMate 77T study

Mariano Provencio Pulla,¹ Mark M. Awad,² Tina Cascone,³ <u>Jonathan D. Spicer</u>,⁴ Jie He,⁵ Shun Lu,⁶ Aurelia Alexandru,⁷ Yasutaka Watanabe,⁸ Robin Cornelissen,⁹ Ludmila de Oliveira Muniz Koch,¹⁰ Jaroslaw Kuzdzal,¹¹ Jean-Louis Pujol,¹² Petra Hoffknecht,¹³ Jhanelle E. Gray,¹⁴ Cinthya Coronado Erdmann,¹⁵ Jaclyn Neely,¹⁵ Vipul Devas,¹⁵ Sumeena Bhatia,¹⁵ Fumihiro Tanaka¹⁶

¹Hospital Universitario Puerta de Hierro, Madrid, Spain; ²Dana-Farber Cancer Institute, Boston, MA, USA; ³The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴McGill University Health Centre, Montreal, Quebec, Canada; ⁵National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; 6Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; 7Institutul Oncologic Bucuresti Prof. Dr. Alexandru Trestioreanu, Bucharest, Romania; 8Saitama Cancer Center, Saitama, Japan; 9Erasmus MC Cancer Institute, Rotterdam, Netherlands; ¹0Hospital Israelita Albert Einstein, Sao Paulo, Brazil; ¹¹John Paul II Hospital, Krakow, Poland; ¹²Montpellier Regional University Hospital, Montpellier, France; ¹³Franziskus-Hospital Harderberg, Niels-Stensen-Kliniken, Georgsmarienhutte, Germany; ¹⁴Moffitt Cancer Center, Tampa, FL, USA; ¹⁵Bristol Myers Squibb, Princeton, NJ, USA; ¹⁶University of Occupational and Environmental Health, Kitakyushu, Japan


EFS per BICR

• Landmark EFS from definitive surgery among patients who had definitive surgery for NIVO (n = 178) vs PBO (n = 178): HR = 0.52 (95% CI, 0.37-0.73)


Median follow-up (range): 33.3 months (23.6-52.1). 95% CIs for EFS rates are designated in the parentheses.

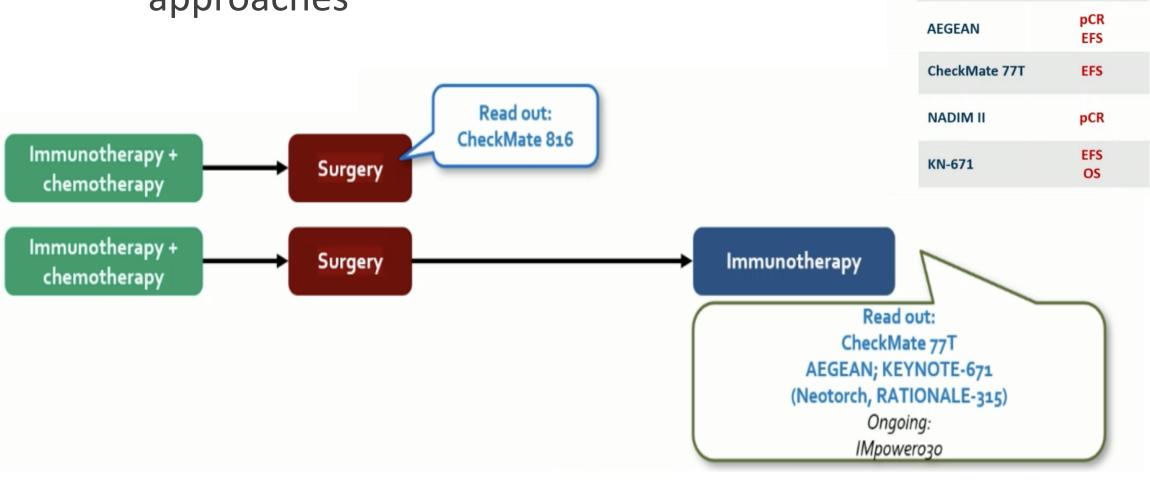
Landmark EFS from definitive surgerya by pCR status

 Baseline characteristics were generally similar between patients with or without pCR and between treatment arms, except a higher proportion of patients with pCR had tumor PD-L1 ≥ 1% vs patients without pCR in the NIVO arm

FDA and EMA approvals ICB and TKIs early-stage NSCLC

Congresso Nazionale

CARCINOMA DEL POLMONE: QUALI NOVITÀ NEL 2024?


▼ EDIZIONE

28 OTTOBRE 2024
VERONA
Hotel Leon D'Oro

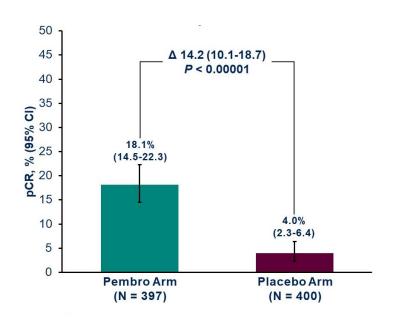
Responsabile Scientifico STEFANIA GORI

Neoadjuvant & Perioperative approaches

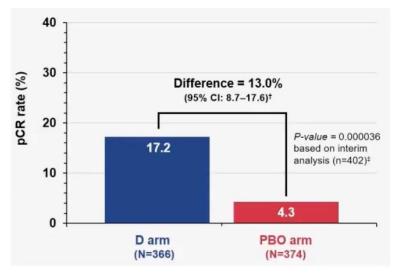
Primary

endpoint

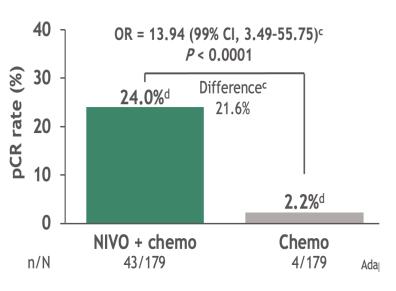
pCR

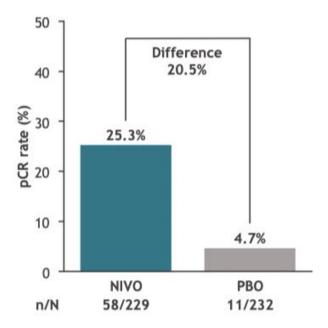

EFS

Trial

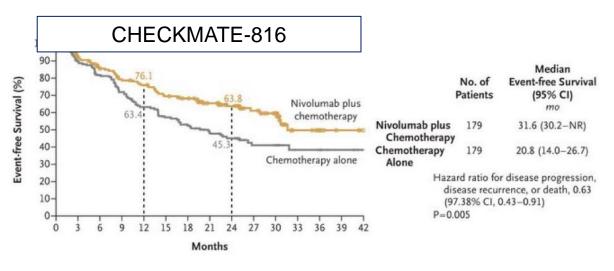

CheckMate 816

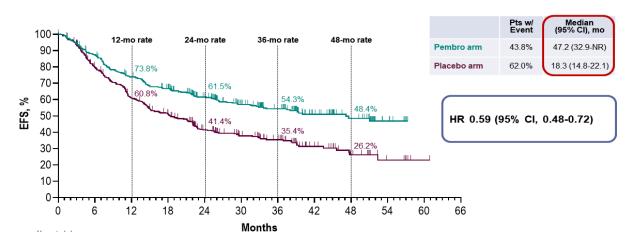
Perioperative Immunotherapy in early stage NSCLC


pCR

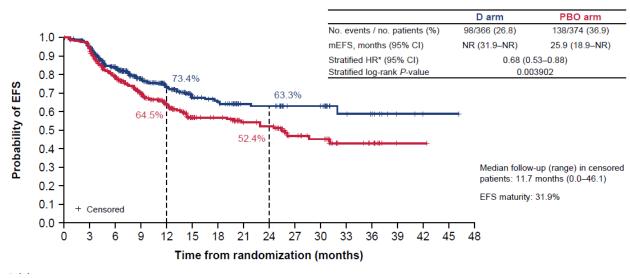

KEYNOTE 671

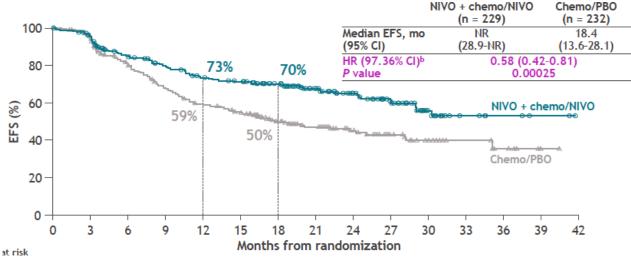
AEGEAN


CHECKMATE 816

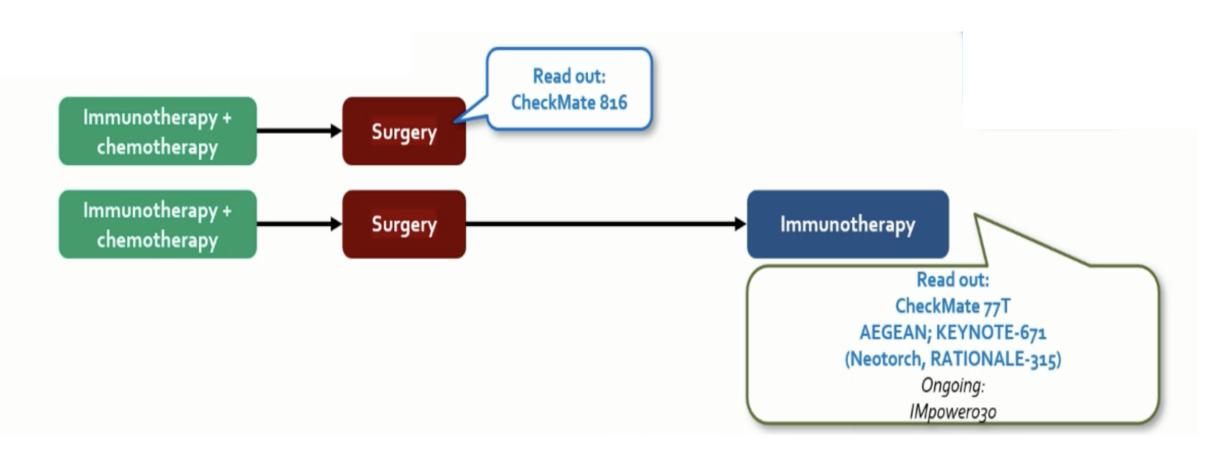

CHECKMATE - 77T

Perioperative Immunotherapy in early stage NSCLC


Consistent EFS Benefit


KEYNOTE-671: Pembro+CT

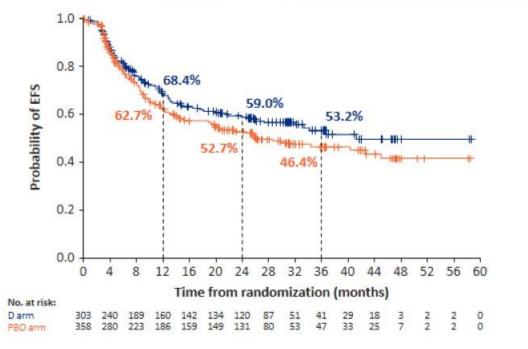
AEGEAN: Durva+CT



CHECKMATE-77T: Nivo+CT

Spicer, ESMO 2023; Heymach, NEJM 2023; Cascone, ESMO 2023

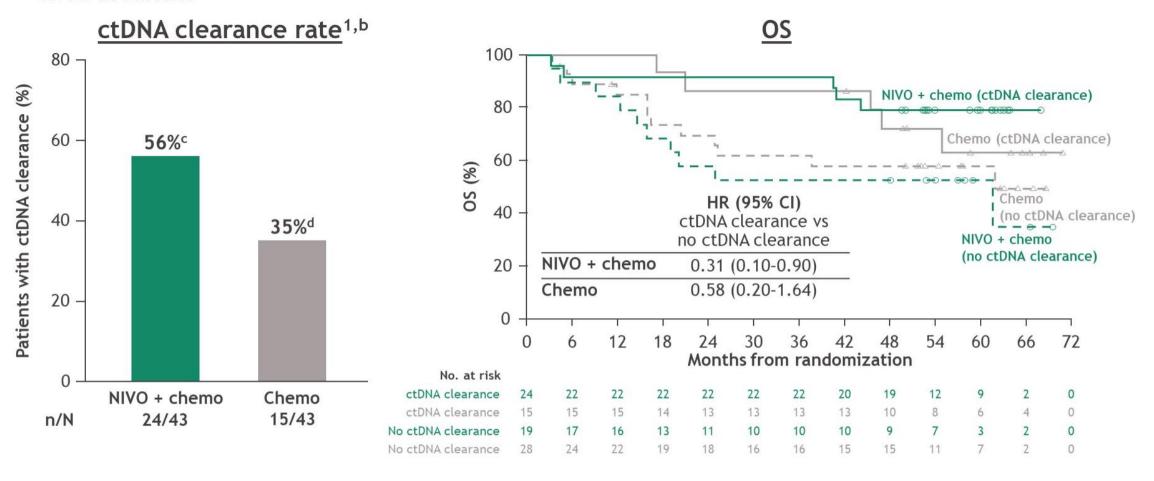
Neoadjuvant & Perioperative approaches

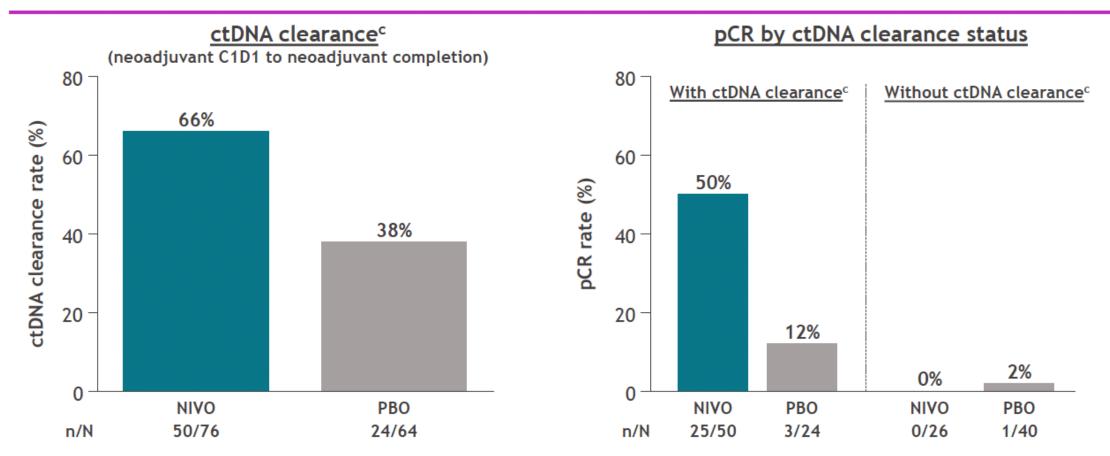

EFS by pCR status (exploratory analysis; mITT)

EFS benefit favored the durvalumab arm regardless of whether patients demonstrated pCR

Patients with pCR D arm PBO arm No. events / no. patients (%) 9/63 (14.3) 3/16 (18.8) mEFS, months (95% CI) NR (NR-NR) NR (25.4-NR) Unstratified HR (95% CI) 0.73 (0.22-3.28) 1.0 93.7% 88.9% 86.3% 0.8 78.3% Probability of EFS 0.6 0.2 20 24 28 32 36 40 44 48 52 56 60 Time from randomization (months) No. at risk: D arm 59 15 55 13

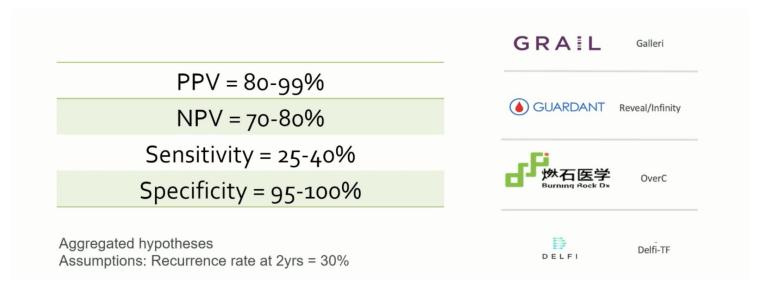
Patients without pCR


	D arm	PBO arm			
No. events / no. patients (%)	115/303 (38.0)	162/358 (45.3)			
mEFS, months (95% CI)	41.2 (31.9-NR)	25.9 (19.8-45.0)			
Unstratified HR (95% CI)	0.81 (0.64-1.03)				

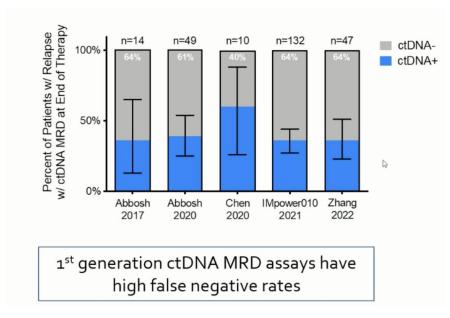

PBO arm

ctDNA clearance rate and OS by ctDNA clearance

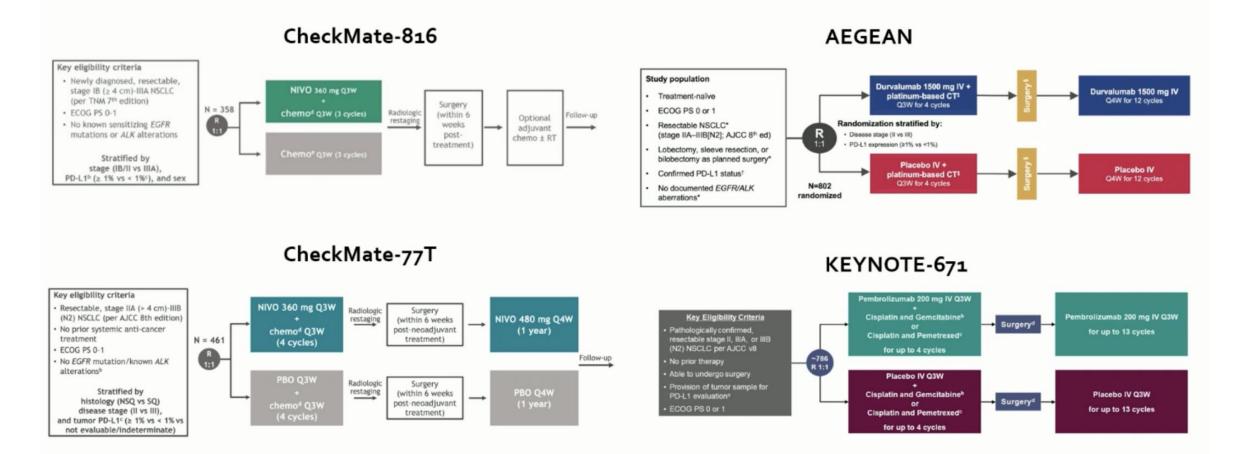
Among concurrently randomized patients, 89 (25%) had evaluable ctDNA levels, and 86 (24%) had detectable ctDNA levels at baseline^{1,a}



50% of ctDNA clearance is seen in absence of pCR in CM7T



- Among patients with ctDNA clearance, the EFS HR was 0.38 (95% CI, 0.16-0.88); 2-year EFS rates were 81% (NIVO) vs 58% (PBO)
- Among patients without ctDNA clearance, the EFS HR was 0.74 (95% CI, 0.39-1.42); 2-year EFS rates were 50% (NIVO) vs 31% (PBO)


MRD tests are specific, but not sensitive enough to guide any de-escalation decisions today

....and have significants false negative rates!

What data do we have in NSCLC: phase III global trials

Differences in preoperative pathological confirmation of lymph nodes, brain imaging, cisplatin vs. carboplatin, pCR criteria, EFS definition

Neo-Adjuvant or peri-operative trials: a basis for discussion

Trials	stage	n	Stratification	Neo-adjuvant	adjuvant	Main objectives
CheckMate 816 ⁽¹⁾ Phase III R1:1	IB (≥4cm), II, IIIA (7 th ed.) ALK/EGFR -	179 179	IB,II vs IIIA PD-L1 (< 1 vs ≥1%, PharmDx Dako 28-8) Sex	Chemo. + Nivo. (x3) Chemo. (x3)	Optional chemo. (x4) Optional chemo. (x4)	EFS pCR
KEYNOTE-671 ⁽²⁾ Phase III R1:1	II, IIIA, IIIB[N2] (8 th ed.) ALK/EGFR -	397 400	II vs. III PD-L1-TPS (<50% vs. ≥50%, PharmDx, 22C3), Nonsquamous vs squamous East Asia vs Other	Gem-cis. or Pem-cis (x4) + Pembro. (x4) + Placebo (x4)	Pembro. (1 year) Placebo (1 year)	EFS pCR
AEGEAN ⁽³⁾ Phase III R1:1	II, IIIA, IIIB[N2] (8 th ed.) ALK/EGFR -	366 374	II vs III PD-L1 (<1% vs ≥1%)	Chemo. + Durva. (x4) Chemo. + Placebo(x4)	Durva. (1 year) Placebo (1 year)	pCR EFS
CheckMate 77T ⁽⁶⁾ Phase III R1:1	IIA (> 4 cm), IIIB[N2] (8 th ed.) ALK/EGFR -	229 232	Nonsquamous vs squamous II vs III PD-L1 (<1% vs. ≥1% vs NE or ND PharmDx Dako 28-8)	Chemo. + Nivo. (x4) Chemo. + Placebo (x4)	Nivo. (1 year) Placebo (1 year)	EFS

^{*} Neotorch, results for stage III only

^{**} Statistical hierarchical test: EFS stage III → EFS stage II, III → MPR stage III → MPR stage II, III → OS stage II, III

DFS and EFS are listed as surrogate endpoints that were the basis of drug approvals or licensure by the FDA¹

Time from randomisation to any of the following:

First recurrence of NSCLC

DFS

(adjuvant)

- Occurrence of new primary NSCLC
 - Death from any cause

DFS and EFS are also accepted endpoints by the EMA²

Time from randomisation to any of the following:

- Progression of disease that precludes surgery
- Occurrence of new primary NSCLC
 - · Death from any cause

Absence of any viable tumour at the time of surgical resection



≤10% residual viable tumour at the time of surgical resection, as assessed by central pathology laboratory

^{*}Note that EFS is functionally the same as DFS but is used instead for neoadjuvant studies because patients are technically not disease-free until they have undergone surgery

THE IDOLATRY OF THE SURROGATE

Easier to measure surrogate outcomes are often used instead of patient important outcomes such as death, quality of life, or functional capacity when assessing treatments. **John Yudkin, Kasia Lipska**, **and Victor Montori** argue that our obsession with surrogates is damaging patient care

BMJ | 14 JANUARY 2012 | VOLUME 344

Since they respond sooner than outcomes that are important to patients, surrogates are better suited as end points in clinical trials that need to be completed quickly and at low cost

Surrogate markers are not intrinsically flawed. When interpreted appropriately, they can be helpful in risk stratification and in treatment

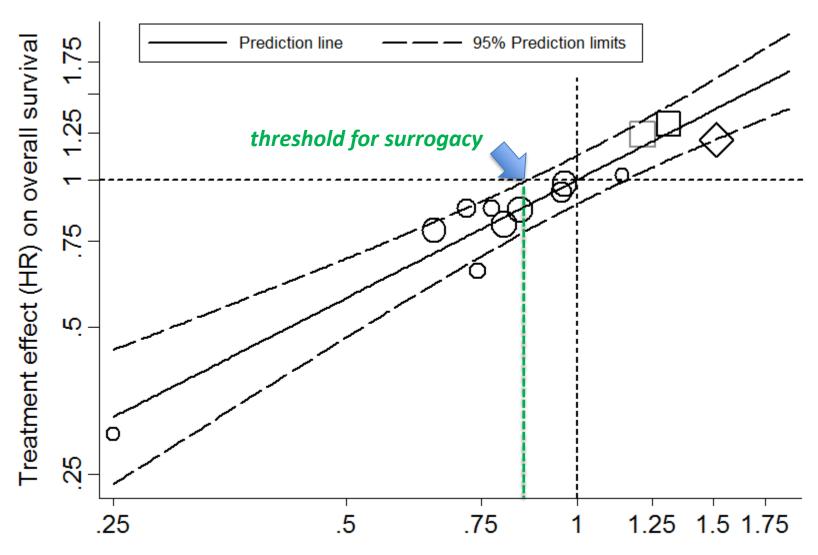
Pathological response in resectable non-small cell lung cancer: a systematic literature review and meta-analysis

Nathalie A. Waser [a], PhD,^{1,*} Melanie Quintana, MSc,² Bernd Schweikert, PhD,³ Jamie E. Chaft, MD,⁴ Lindsay Berry, PhD,² Ahmed Adam, MPH,⁴ Lien Vo, PharmD, MPH,⁵ John R. Penrod, PhD,⁵ Joseph Fiore, PharmD,⁵ Donald A. Berry, PhD,² Sarah Goring, MSc¹

JNCI Cancer Spectrum, 2024, 8(3), pkae021

Author (year)	Histology	Stage	Treatment	Pathological complete response	Sample Size	HR	95% CI Weight
Fischer 2008*	All	IIB-IIIB	CRT=>S	30%	44	0.13	[0.02 to 0.95] 0.6%
Yokomise 2007*	All	IIIA-IIIB	CRT=>S	17% :	41	0.20	[0.03 to 1.40] 0.6%
Spaggiari 2016	All	IA-IIIB	CT=>S	6% ←	126	0.22	[0.07 to 0.70] 1.7%
Martin 2002*	All	IA-IV	CT/CRT=>S	5 5%	446	0.27	[0.14 to 0.53] 4.5%
Shintani 2012	All	IIIA-B	CRT=>S	21% ←	52	0.29	[0.07 to 1.23] 1.1%
Kayawake 2019*	All	II-III	CT/CRT=>S	26%	145	0.30	[0.17 to 0.53] 5.7%
van der Meij BS 2011	All	Ш	CRT=>S	29% ← ∷	51	0.32	[0.10 to 1.05] 1.6%
Mouillet 2012*	All	IB-IIB	CT=>S	8%	492	0.36	[0.19 to 0.69] 4.8%
Lee HY 2012	All	IIIA	CRT=>S	17%	205	0.41	[0.20 to 0.83] 4.0%
Pottgen 2015	All	Ш	CRT=>S	26%	157	0.41	[0.25 to 0.67] 7.3%
Yamaguchi 2013*	All	IIIA/B	CRT=>S	23% ←	39	0.42	[0.05 to 3.52] 0.5%
Krantz 2018*	All	IIIA	CT/CRT=>S	9%	1364	0.46	[0.32 to 0.65] 11.4%
Remark 2016*	All	Ш	CT=>S	12%	122	0.48	[0.17 to 1.35] 2.1%
Couñago 2019	All	IIIA	CT/CRT=>S	27%	118	0.57	[0.28 to 1.16] 4.0%
Haque 2019	All	Ш	CRT=>S	16%	1750	0.57	[0.47 to 0.70] 19.4%
Sawabata 2003*	All	I-IV	CRT=>S	13%	131	0.58	[0.28 to 1.22] 3.8%
Kim 2011*	All	IB-IIIB	CRT=>S	22%	233	0.59	[0.37 to 0.94] 7.9%
Lee H 2014	All	IIIA	CRT=>S	16%	355	0.75	[0.43 to 1.29] 6.2%
Kim 2016*	All	I-IV	CRT=>S	12%	574	0.76	[0.52 to 1.13] 10.2%
Coroller 2017	All	11–111	CRT=>S	15%	85	0.78	[0.30 to 2.01] 2.4%
Random effects model				<u></u>	_	0.49	[0.42 to 0.57] 100.0%
Heterogeneity: $I^2 = 20\%$, $\tau^2 = 10\%$	= 0.0218, <i>P</i> =	.20			10		
				Favors pathological Favors no pathological	ll .		

complete response

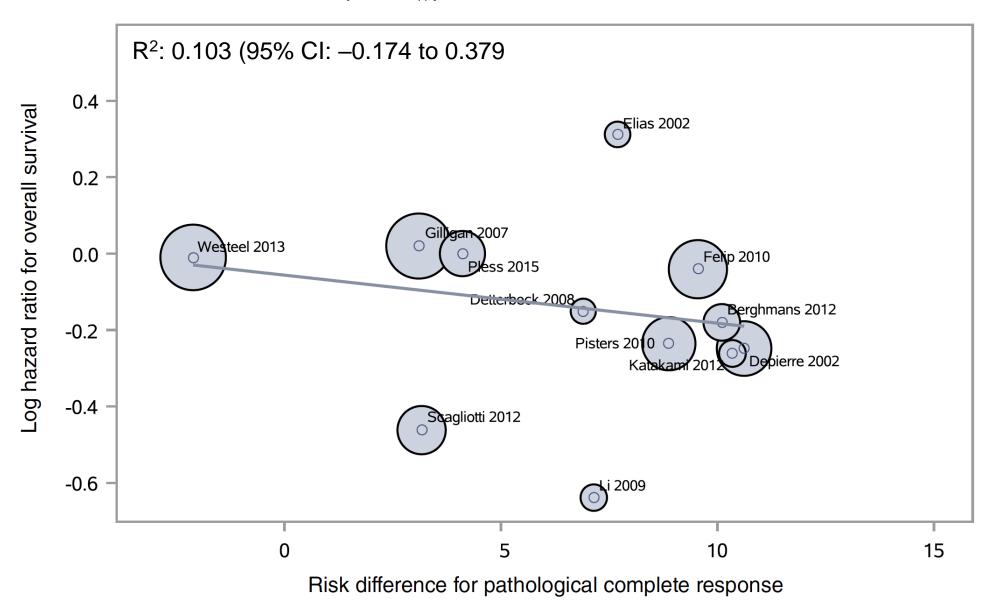

complete response

Patient level analysis

(association between the expression of the intermediate endpoint and the reference final endpoint)

TRIAL LEVEL CORRELATION BETWEEN EFFECTS

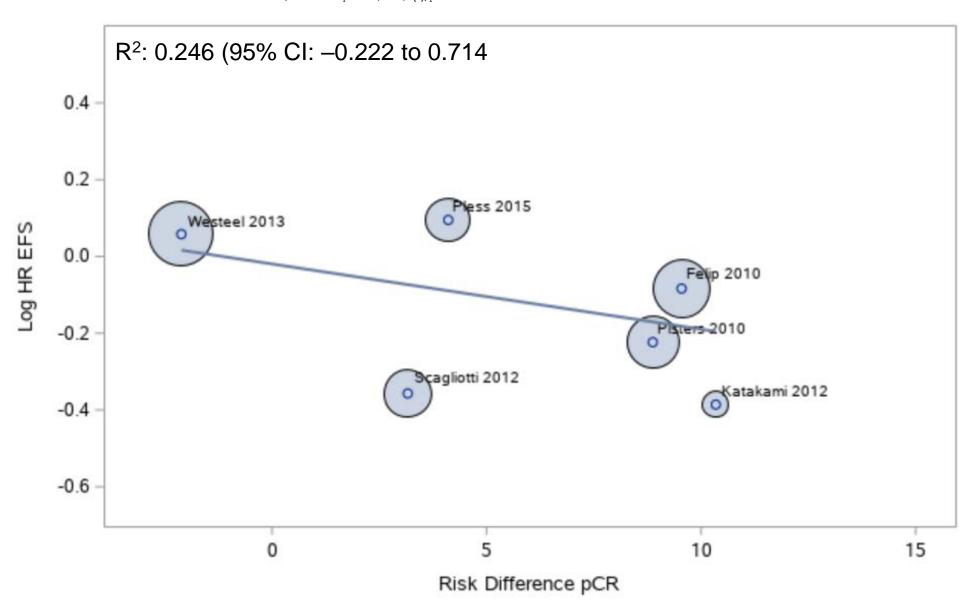
Treatment effect (HR) on progression-free survival


Burzykowski and Buyse, Pharmaceutical Statist 2006;5:173

Pathological response in resectable non–small cell lung cancer: a systematic literature review and meta-analysis

Nathalie A. Waser [6], PhD, ^{1,*} Melanie Quintana, MSC, ² Bernd Schweikert, PhD, ³ Jamie E. Chaft, MD, ⁴ Lindsay Berry, PhD, ² Ahmed Adam, MPH, ¹ Lien Vo, PharmD, MPH, ⁵ John R. Penrod, PhD, ⁵ Joseph Fiore, PharmD, ⁵ Donald A. Berry, PhD, ² Sarah Goring, MSC ¹

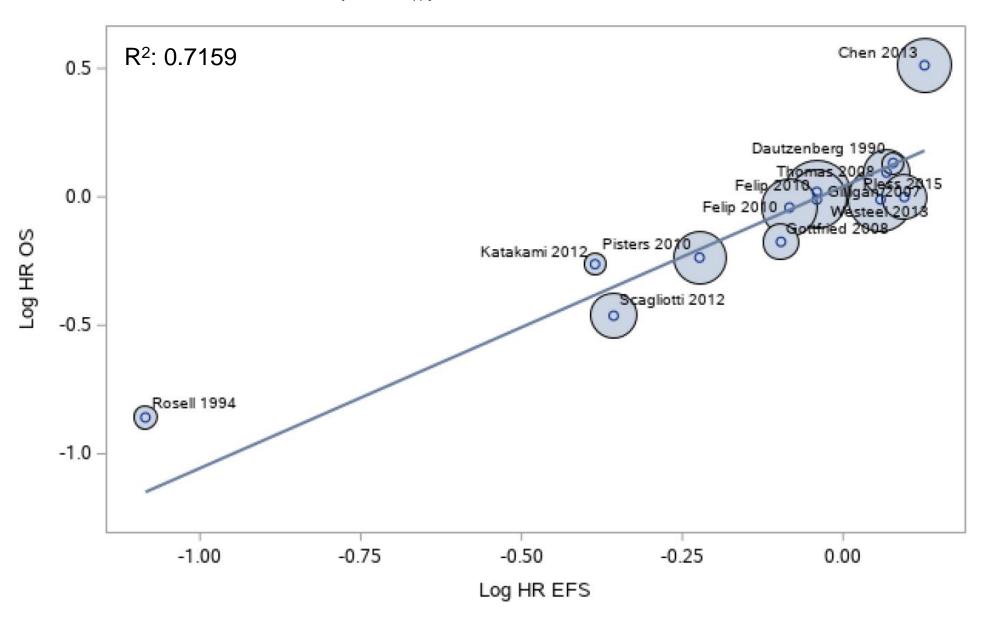
JNCI Cancer Spectrum, 2024, 8(3), pkae021



Pathological response in resectable non–small cell lung cancer: a systematic literature review and meta-analysis

Nathalie A. Waser , PhD, ^{1,*} Melanie Quintana, MSc, ² Bernd Schweikert, PhD, ³ Jamie E. Chaft, MD, ⁴ Lindsay Berry, PhD, ² Ahmed Adam, MPH, ⁴ Lien Vo, PharmD, MPH, ⁵ John R. Penrod, PhD, ⁵ Joseph Fiore, PharmD, ⁵ Donald A. Berry, PhD, ² Sarah Goring, MSc¹

JNCI Cancer Spectrum, 2024, 8(3), pkae021



Pathological response in resectable non–small cell lung cancer: a systematic literature review and meta-analysis

Nathalie A. Waser [a], PhD, ^{1,*} Melanie Quintana, MSc, ² Bernd Schweikert, PhD, ³ Jamie E. Chaft, MD, ⁴ Lindsay Berry, PhD, ² Ahmed Adam, MPH, ¹ Lien Vo, PharmD, MPH, ⁵ John R. Penrod, PhD, ⁵ Joseph Fiore, PharmD, ⁵ Donald A. Berry, PhD, ² Sarah Goring, MSc¹

JNCI Cancer Spectrum, 2024, 8(3), pkae021

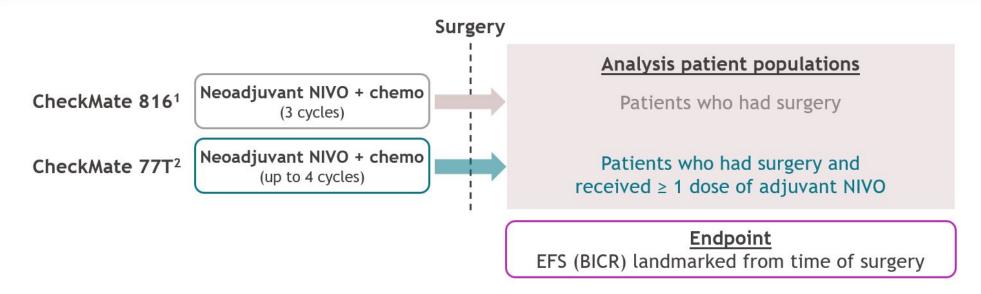
THE IDOLATRY OF THE SURROGATE

Easier to measure surrogate outcomes are often used instead of patient important outcomes such as death, quality of life, or functional capacity when assessing treatments. **John Yudkin**, **Kasia Lipska**, **and Victor Montori** argue that our obsession with surrogates is damaging patient care

BMJ | 14 JANUARY 2012 | VOLUME 344

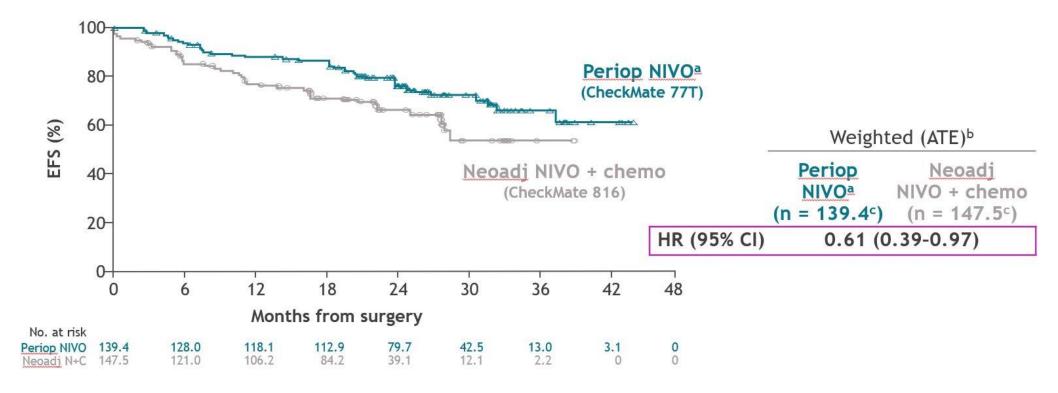
Since they respond sooner than outcomes that are important to patients, surrogates are better suited as end points in clinical trials that need to be completed quickly and at low cost

Surrogate markers are not intrinsically flawed. When interpreted appropriately, they can be helpful in risk stratification and in treatment


In order to fully engage our patients in treatment decisions, we must understand how therapies affect outcomes that are important to them. Surrogate endpoints will not provide us with these answers.

Perioperative vs neoadjuvant nivolumab for resectable NSCLC: patient-level data analysis of CheckMate 77T vs CheckMate 816

<u>Patrick M. Forde</u>, ¹ Solange Peters, ² Jessica Donington, ³ Stephanie Meadows-Shropshire, ⁴ Phuong Tran, ⁴ Stefano Lucherini, ⁵ Cinthya Coronado Erdmann, ⁶ Hong Sun, ⁶ Tina Cascone ⁷


¹The Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, USA; ²Lausanne University Hospital, Lausanne, Switzerland; ³The University of Chicago, Chicago, IL, USA; ⁴Bristol Myers Squibb, Princeton, NJ, USA; ⁵Bristol Myers Squibb, Uxbridge, UK; ⁶Bristol Myers Squibb, Boudry, Switzerland; ¹The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Methods: perioperative NIVO vs neoadjuvant NIVO + chemo

- In lieu of a head-to-head trial, exploratory propensity score weighting analyses (ATT^a and ATE^b) were performed to allow simplified reproduction of a randomized trial by adjusting for clinically relevant baseline demographics and disease <u>characteristics</u>^c between study populations and reducing the confounding effects of these factors
 - Subgroup analyses were not weighted due to smaller sample sizes
- Median duration of follow-upd: 29.5 months (CheckMate 816) and 33.3 months (CheckMate 77T)

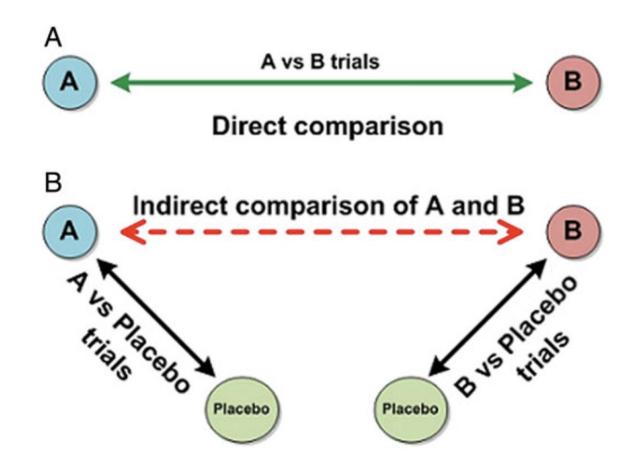
Landmark EFS (BICR) from definitive surgery

HR (95% CI): ATT^d weighted analysis, 0.56 (0.35-0.90); unweighted analysis, 0.59 (0.38-0.92)

Median follow-up: CheckMate 816, 29.5 months; CheckMate 77T, 33.3 months. <u>ATE</u>: varying weights were applied to all patients in both neoadjuvant NIVO + chemo arm (CheckMate 816) and perioperative NIVO (CheckMate 77T) to make them comparable to one another. <u>N</u> values fractional due to weighting. <u>ATT</u>: varying weights were applied to patients in the neoadjuvant NIVO + chemo arm (CheckMate 816) to make them comparable to those in the perioperative NIVO arm (CheckMate 77T).

In the unweighted analysis population, 89 patients (64%) completed adjuvant therapy, and median number of doses (range) was 13.0 (1-13). Unweighted landmark EFS from surgery among all patients who had surgery (regardless of whether they received adjuvant NIVO in CheckMate 77T) for periop NIVO vs neoadj NIVO + chemo: HR = 0.82 (95% CI, 0.55-1.21).

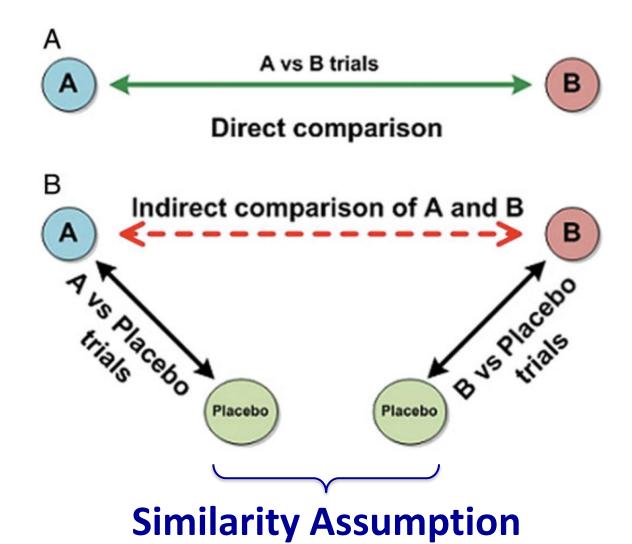
Indirect comparisons of competing interventions


AM Glenny, ^{1*} DG Altman, ² F Song, ³ C Sakarovitch, ² JJ Deeks, ² R D'Amico, ² M Bradburn ² and AJ Eastwood ⁴

Health Technology Assessment 2005; Vol. 9: No. 26

When conducting systematic reviews to evaluate the effectiveness of interventions, direct evidence from good-quality RCTs should be used wherever possible. If little or no such evidence exists, it may be necessary to look for indirect comparisons from RCTs. The reviewer needs, however, to be aware that the results may be susceptible to bias.

Indirect comparisons of competing interventions


AM Glenny, ^{1*} DG Altman, ² F Song, ³ C Sakarovitch, ² JJ Deeks, ² R D'Amico, ² M Bradburn ² and AJ Eastwood ⁴

Health Technology Assessment 2005; Vol. 9: No. 26

When conducting systematic reviews to evaluate the effectiveness of interventions, direct evidence from good-quality RCTs should be used wherever possible. If little or no such evidence exists, it may be necessary to look for indirect comparisons from RCTs. The reviewer needs, however, to be aware that the results may be susceptible to bias.

trials must be comparable on effect modifiers to obtain an unbiased pooled estimate.

Indirect comparisons of competing interventions

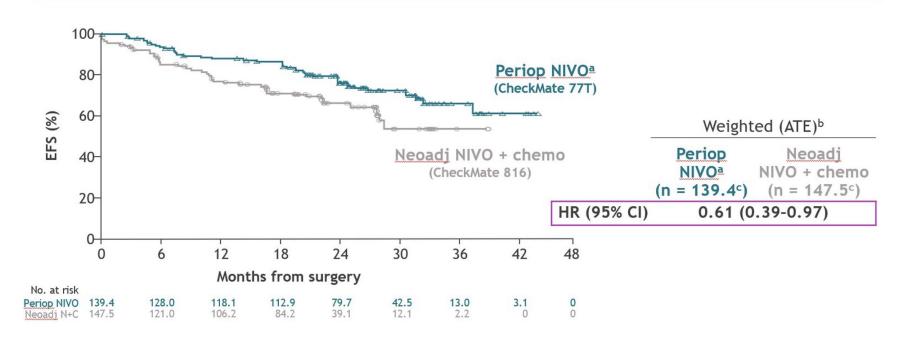
AM Glenny, ^{1*} DG Altman, ² F Song, ³ C Sakarovitch, ² JJ Deeks, ² R D'Amico, ² M Bradburn ² and AJ Eastwood ⁴

Health Technology Assessment 2005; Vol. 9: No. 26

When conducting systematic reviews to evaluate the effectiveness of interventions, direct evidence from good-quality RCTs should be used wherever possible. If little or no such evidence exists, it may be necessary to look for indirect comparisons from RCTs. The reviewer needs, however, to be aware that the results may be susceptible to bias.

WHAT FACTORS DETERMINE SIMILARITY?

- Included trials should be "comparable" in terms of key factors that could affect the outcome of treatment
- If differences in patient or study characteristics would not be expected to influence treatment effect, the assumption of similarity is not violated
- There are no statistical methods to test for similarity
- Must use clinical knowledge and best judgement to assess appropriate comparability


Population-adjusted Indirect Comparisons

- Population-adjusted Indirect Comparisons use patient-level data from a trial of a given treatment (referred to as the index trial) to derive a comparison of outcomes with competing treatments, based on published information from similarly designed studies, after adjusting for differences in the characteristics of the populations.
- *in other words*: individual patient data (IPD) in one or more trials are used to adjust for between-trial differences in the distribution of variables that influence outcome

https://www.nicedsu.org.uk/wp-content/uploads/2017/05/Population-adjustment-TSD-FINAL.pdf.

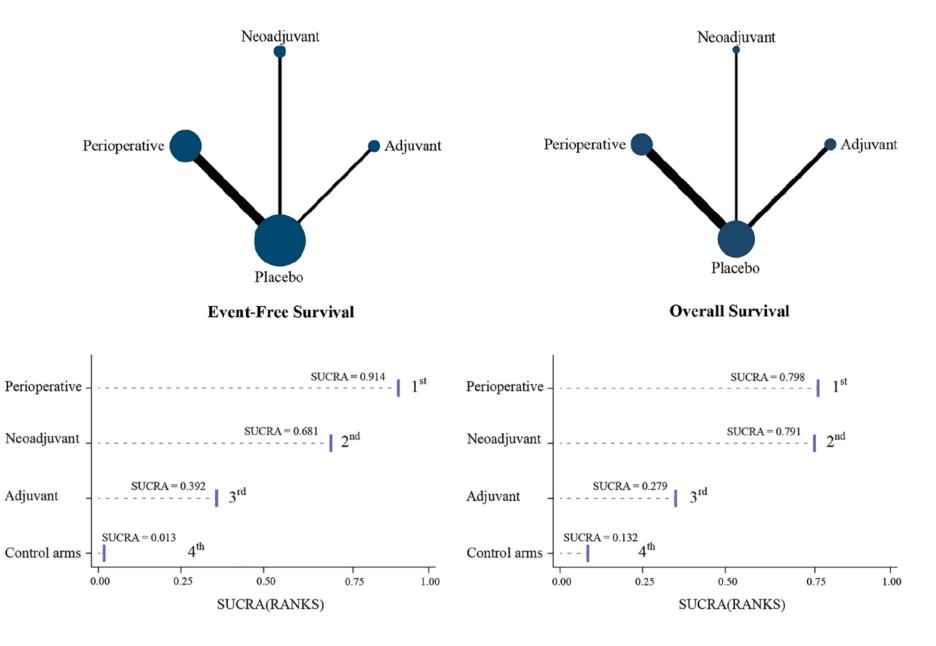
Landmark EFS (BICR) from definitive surgery

- In lieu of a head-to-head trial, exploratory propensity score weighting analyses (ATT^a and ATE^b) were performed to
 allow simplified reproduction of a randomized trial by adjusting for clinically relevant baseline demographics and
 disease characteristics^c between study populations and reducing the confounding effects of these factors
 - Subgroup analyses were not weighted due to smaller sample sizes
- Median duration of follow-upd: 29.5 months (CheckMate 816) and 33.3 months (CheckMate 77T)

Efficacy and safety of perioperative, neoadjuvant, or adjuvant immunotherapy alone or in combination with chemotherapy in early-stage non-small cell lung cancer: a systematic review and meta-analysis of randomized clinical trials

Yunchang Meng*, Qingfeng Zhang*, Ranpu Wu, Huijuan Li, Zhaofeng Wang, Yang Yao, Xinjing Li, Zhangxuan Chen, Yanzhuo Gong and Hongbing Liu

Ther Adv Med Oncol 2024, Vol. 16: 1–18


Event-Free Survival

Hazard Ratio Hazard Ratio Study or Subgroup logHR SE Weight IV, Random, 95% CI IV, Random, 95% CI Neoadjuvant CheckMate816 2022 -0.38570.1635 12.7% 0.68 [0.49; 0.93] TD-FOREKNOW 2023 -0.65391.7% 0.4631 0.52 [0.21; 1.29] Total (95% CI) 14.4% 0.66 [0.49; 0.89] Heterogeneity: $\text{Tau}^2 = 0$; $\text{Chi}^2 = 0.3$, df = 1 (P = 0.58); $I^2 = 0\%$ **Perioperative** AEGEAN 2023 0.1294 19.5% 0.68 [0.53; 0.88] -0.385710.4% Neotorch 2024 -0.91630.1813 0.40 [0.28; 0.57] KEYNOTE-671 2023 -0.527628.8% 0.59 [0.48; 0.72] 0.1034NADIM II 2023 0.3210 -0.75503.5% 0.47 [0.25; 0.88] CheckMate77T 2023 -0.57980.1675 12.1% 0.56 [0.42; 0.81] RATIONALE-315 2024 -0.57980.1736 11.3% 0.56 [0.40; 0.79] Total (95% CI) 85.6% 0.56 [0.49; 0.65] Heterogeneity: $\text{Tau}^2 = 0.0061$; $\text{Chi}^2 = 6.17$, df = 5 (P = 0.29); $I^2 = 19\%$ **Total (95% CI)** 0.58 [0.52; 0.65] Heterogeneity: $\text{Tau}^2 = 0.0019$; $\text{Chi}^2 = 7.25$, df = 7 (P = 0.40); $\text{I}^2 = 3\%$ $\text{Chi}^2 = 0.86, \text{ df} = 1 \quad (P = 0.35)$ Test for subgroup differences: 0.5 Favor immunotherapy Favor chemotherapy

Overall Survival

Study or				Hazard Ratio		Hazar	d Ratio		
Subgroup	logHR	SE	Weight	IV, Random, 95% CI		IV, Rando	m, 95%	CI	
Neoadjuvant									
CheckMate816	-0.4780	0.2731	8.6%	0.62 [0.36; 1.05]		-	\dashv		
Adjuvant									
IMpower010	-0.0050	0.1264	22.9%	0.99 [0.78; 1.28]			-		
KEYNOTE-091	-0.1393	0.1378	21.1%	0.87 [0.67; 1.15]		-	-		
Total (95% CI)	2		43.9%	0.94 [0.78; 1.12]			+		
Heterogeneity: Tau	$1^2 = 0$; Chi ²	$^2 = 0.52$, df	r = 1 (P =	$= 0.47$); $I^2 = 0\%$					
Perioperative									
Neotorch	-0.4780	0.2468	10.1%	0.62 [0.38; 1.00]		-	\dashv		
KEYNOTE-671	-0.3285	0.1294	22.4%	0.72 [0.56; 0.93]		-+	$\vdash \mid$		
NADIM II	-0.8440	0.4185	4.2%	0.43 [0.19; 0.98]		•	-		
RATIONALE-315	-0.4780	0.2351	10.8%	0.62 [0.39; 0.98]		-	_		
Total (95% CI)	2		47.5%	0.66 [0.55; 0.81]		•	٠		
Heterogeneity: Tau	$1^2 = 0$; Chi ²	$^2 = 1.63$, df	r = 3 (P =	$= 0.65$); $I^2 = 0\%$					
Total (95% CI)	2	2	100.0%	0.76 [0.63; 0.90]			<u> </u>		
				$(P = 0.16); I^2 = 359$	%	1	ı	ı	'
Test for subgroup diff	ferences:	$Chi^2 = 7$.11, df = 2	(P = 0.03)	0.2	0.5	1	2	5
					Favor immunot	therapy	Fav	or chem	otherapy

Ther Adv Med Oncol 2024, Vol. 16: 1-18

Grazie per l'attenzione!