La ricerca clinica e traslazionale nel carcinoma polmonare Real World Data

Alessio Cortellini MD PhD

Consultant in Medical Oncology Fondazione Policlinico Universitario Campus Bio-Medico, Rome, IT Asst. Professor, Universitá Campus Bio-Medico, Rome, IT Department of Surgery and Cancer, Imperial College London, UK

Disclosures

Dr Alessio Cortellini

Within the last 2 years I received

Grants for consultancies/advisory boards: MSD, OncoC4, Roche, Regeneron, BMS, Amgen, Daiichi

Sankyo, Astrazeneca, Access Infinity, Ardelis Health, Alpha Sight, Capvision, Techspert.

Speaker fees: Astrazeneca, Roche, Pierre-Fabre, MSD, SANOFI/Regeneron.

Writing/Editorial activity: BMS, MSD.

Travel support: Sanofi, MSD, Roche

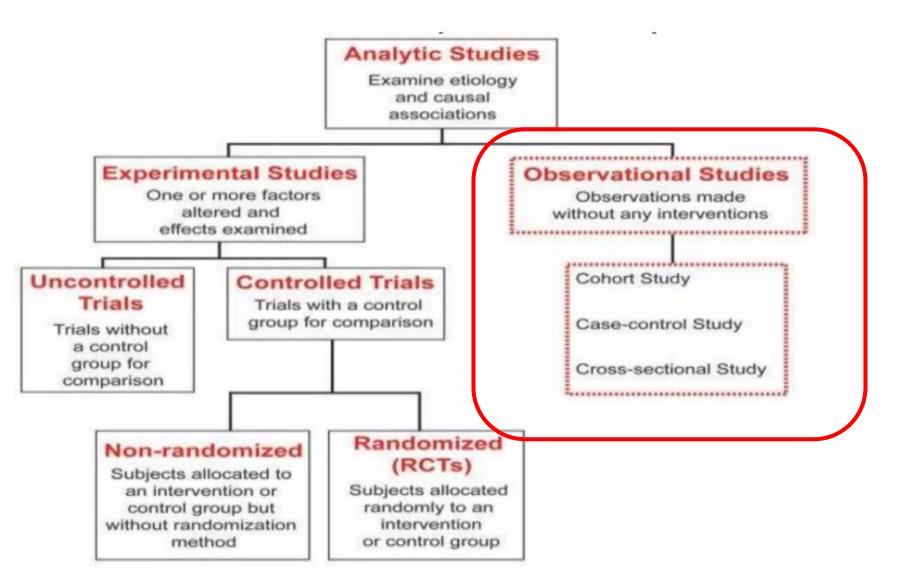
Funding (to institution): International Association for the Study of Lung Cancer

- Real-world evidence (RWE): definition and characteristics.
- RWE examples: "effectiveness" study, special/underrepresented populations, new insight/hypothesis.
- Pitfalls of RWE, beware of selection bias.
- RWE, decision making and health technology assessment (HTA).

• Real-world evidence (RWE): definition and characteristics.

• RWE examples: "effectiveness" study, special/underrepresented populations, new insight/hypothesis.

• Pitfalls of RWE, beware of selection bias.


• RWE, decision making and health technology assessment (HTA).

Imperial College

Interventional vs Observational

Imperial College

RWE: definition and Key characteristics

• Health care information derived from multiple sources outside traditional clinical trial settings (HER, claims and billing data, registries).

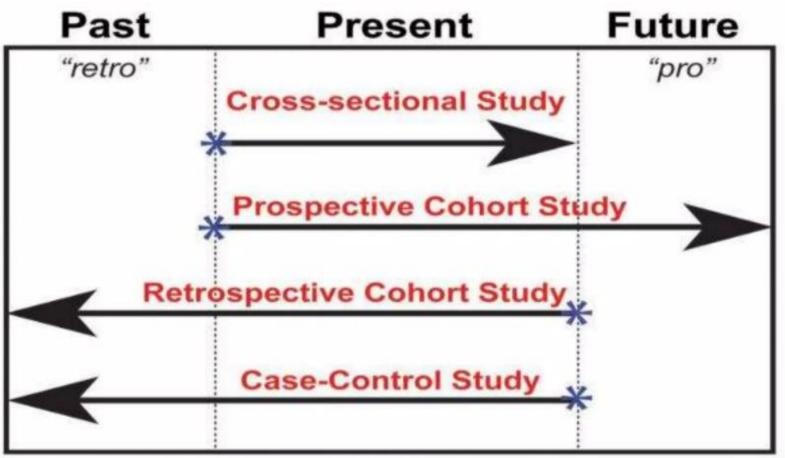
• Complement to Traditional Trials and provides insights that are often more generalizable, addressing limitations related to the controlled environment and selected populations ("effectiveness" vs efficacy).

• It can inform therapeutic development, quality improvement, safety surveillance, generate data on special populations.

• Can generate valuable insights and new research hypothesis.

• Proper use of RWE requires rigorous data management and careful methodological approaches: challenges such as selection bias, data quality concerns, and confounding factors to ensure robust, reliable conclusions.

Imperial College



- **Primary:** data collected for a specific aim/hypothesis (mainly prospective)
- Secondary: data collected without a specific aim or for a different aim (only retrospective).
- Can be "descriptive" (cannot be generalized) or **analytical** (with a hypothesis and a group of interest).
- <u>Case-control study</u>: two existing groups differing in outcomes are identified and compared on the basis of some supposed causal attribute.
- <u>Cross-sectional study</u>: involves data collection from a population, or a representative subset, at one specific point in time.
- <u>Longitudinal study</u>: co-relational research study that involves repeated observations of the same variables over long periods of time.
- <u>Cohort study</u>: a particular form of longitudinal study where a group of patients is closely monitored over a span of time.

Temporal design of observational studies

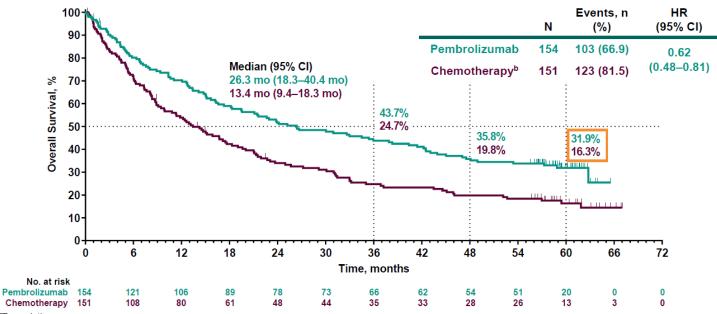
Imperial College

- → Direction of Investigation in Time
- * Start of Investigation

• Real-world evidence (RWE): definition and characteristics.

• RWE examples: "effectiveness" study, special/underrepresented populations, new insight/hypothesis.

• Pitfalls of RWE, beware of selection bias.


• RWE, decision making and health technology assessment (HTA).

RWE & effectiveness: the "pembro story"

Imperial College London

Overall Survival^a

ITT population.

•Effective crossover rate from chemotherapy to anti–PD-(L)1 therapy, 66.0% (99 patients in total crossed over to anti–PD-[L]1 therapy: 83 patients crossed over to pembrolizumab during the study, and 16 patients received subsequent anti–PD-[L]1 therapy outside of crossover; patients may have received >1 subsequent anti–PD-[L]1 therapy). Data cutoff: June 1, 2020.

KN024 exclusion criteria

- EGFR mutation and ALK translocations
- ECOG performance status of ≥ 2
- Unstable CNS metastases*
- Any medical condition requiring immunesuppressant
- Pre-existing Autoimmune Disease
- Steroids (pred >10 mg)
- Active ILD
- Life expectancy shorter than 3 months
- HIV/ Viral Hep / Tubercolosis

*Stable brain mets were allowed

RWE - Italian experience

Real-world cohort from 34 institutions (Italy, Switzerland, UK)

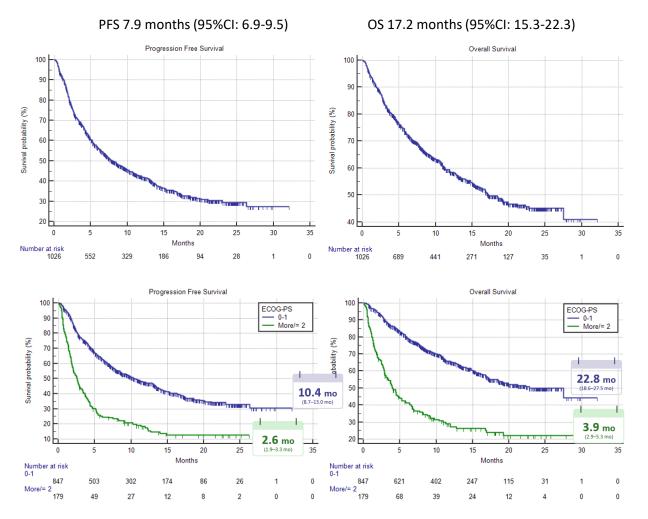
- Patients treated from Jan 2017 to Oct 2019.
- 1st data lock: Feb 2020
- 2nd data lock: Set 2020

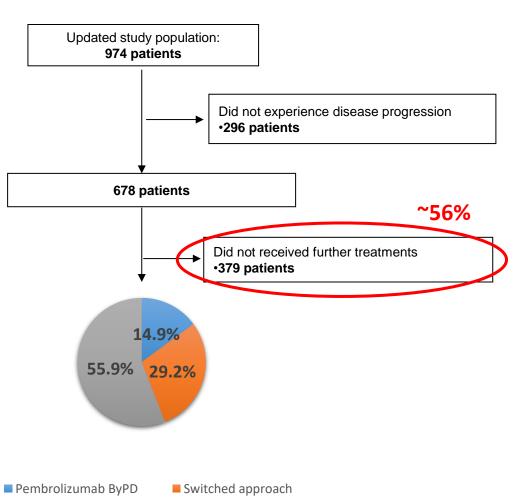
Cancer Immunology, Immunotherapy (2020) 69:2209–2221 https://doi.org/10.1007/s00262-020-02613-9

ORIGINAL ARTICLE

Clinicopathologic correlates of first-line pembrolizumab effectiveness in patients with advanced NSCLC and a PD-L1 expression of \geq 50%

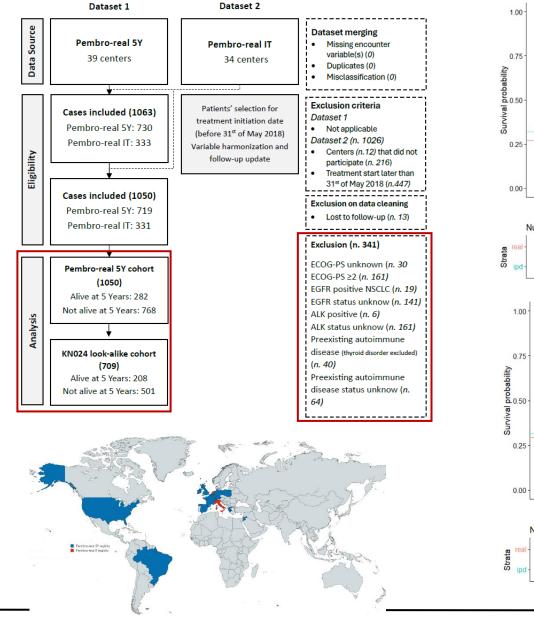
Alessio Cortellini^{1,2} Anarcello Tiseo^{3,4} · Giuseppe L. Banna⁵ · Federico Cappuzzo⁶ · Joachim G. J. V. Aerts⁷ · Fausto Barbieri⁸ · Raffaele Giusti⁹ · Emilio Bria^{10,11} · Diego Cortinovis¹² · Francesco Grossi¹³ · Maria R. Migliorino¹⁴ · Domenico Galetta¹⁵ · Francesco Passiglia¹⁶ · Daniele Santini¹⁷ · Rossana Berardi¹⁸ · Alessandro Morabito¹⁹ · Carlo Genova²⁰ · Francesca Mazzoni²¹ · Vincenzo Di Noia²² · Diego Signorelli²³ · Alessandro Morabito¹⁹ · Carlo Genova²⁰ · Francesca Mazzoni²¹ · Vincenzo Di Noia²² · Diego Signorelli²³ · Alessandro Tuzl²⁴ · Alain Gelibter²⁵ · Paolo Marchetti^{9,25,26} · Marianna Macerelli²⁷ · Francesca Rastelli²⁸ · Rita Chiari²⁹ · Danilo Rocco³⁰ · Stefania Gori³¹ · Michele De Tursi³² · Giovanni Mansueto³³ · Federica Zoratto³⁴ · Matteo Santoni³⁵ · Marianna Tudini³⁶ · Erika Rijavec¹³ · Marco Filetti⁹ · Annamaria Catino¹⁵ · Pamela Pizzutilo¹⁵ · Luca Sala¹² · Fabrizio Citarella¹⁷ · Russano Marco¹⁷ · Mariangela Torniai¹⁸ · Luca Cantini^{7,18} · Giada Targato²⁷ · Vincenzo Sforza¹⁹ · Olga Nigro²⁴ · Miriam G. Ferrara^{10,11} · Ettore D'Argento¹⁰ · Sebastiano Butt³ · Paola Bordi³ · Lorenzo Antonuzzo²¹ · Simona Scodes⁶ · Lorenza Landi⁶ · Giorgia Guaitoll⁸ · Cinzia Baldessarl⁸ · Luigi Della Gravara³⁰ · Maria Giovanna Dal Bello²⁰ · Robert A. Belderbos⁷ · Paolo Bironzo¹⁶ · Simona Carnio¹⁶ · Serena Ricciardi¹⁴ · Alessio Grieco¹⁴ · Alessandro De Toma²³ · Claudia Proto²³ · Alex Friedlaender³⁷ · Ornella Cantale⁵ · Biagio Ricciuti^{38,39} · Alfredo Addeo³⁷ · Giulio Metro⁴⁰ · Corrado Ficorella^{1,2} · Giampiero Porzio^{1,2}

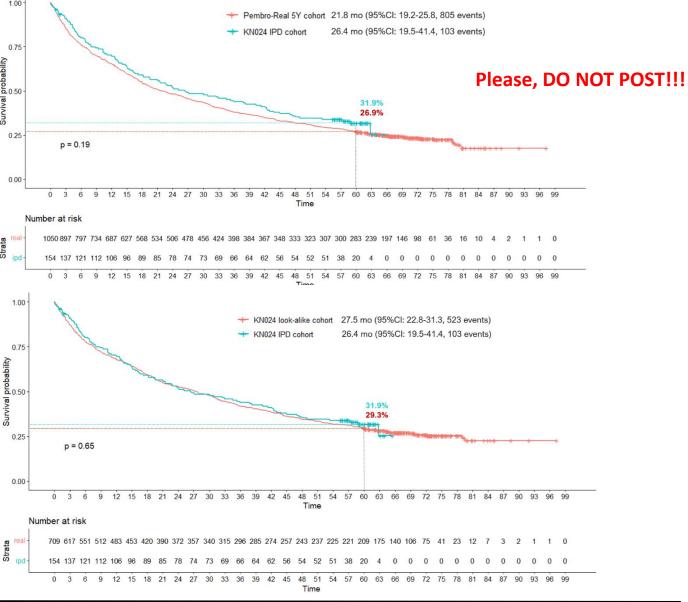

1026 patients


- 51.6% elderly (≥ 70 anni)
- 10.3% Never smokers
- Poor PS: 17% PS2 e 0.4% PS3
- 24.2% Squamous histology
- 17.6% CNS mets
- 31.8% Bone mets
- 15.4% Liver mets
- 24.5% Baseline steroids, including high dose (>10 mg pred or eq/day)
- 16.4% received palliative RT within prior 30 days (mostly to the bone)
- 6.9% EGFR unknown
- 8.2% ALK unknown

RWE - Italian experience

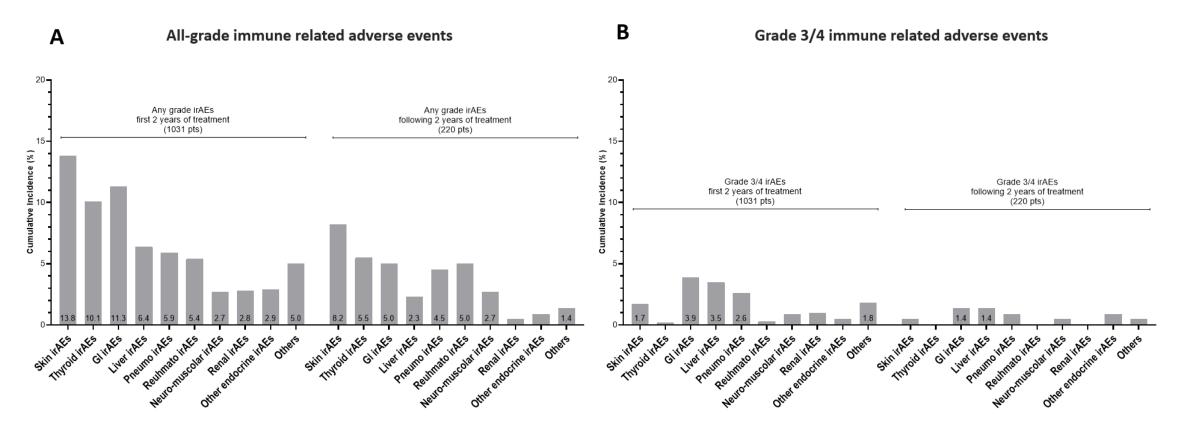
Imperial College London




Median FUP: 22.7 months

RWE - 5years outcome

Imperial College London



RWE - 5years outcome

Imperial College London

Please, DO NOT POST!!!

Cortellini A, et al. SUBMITTED

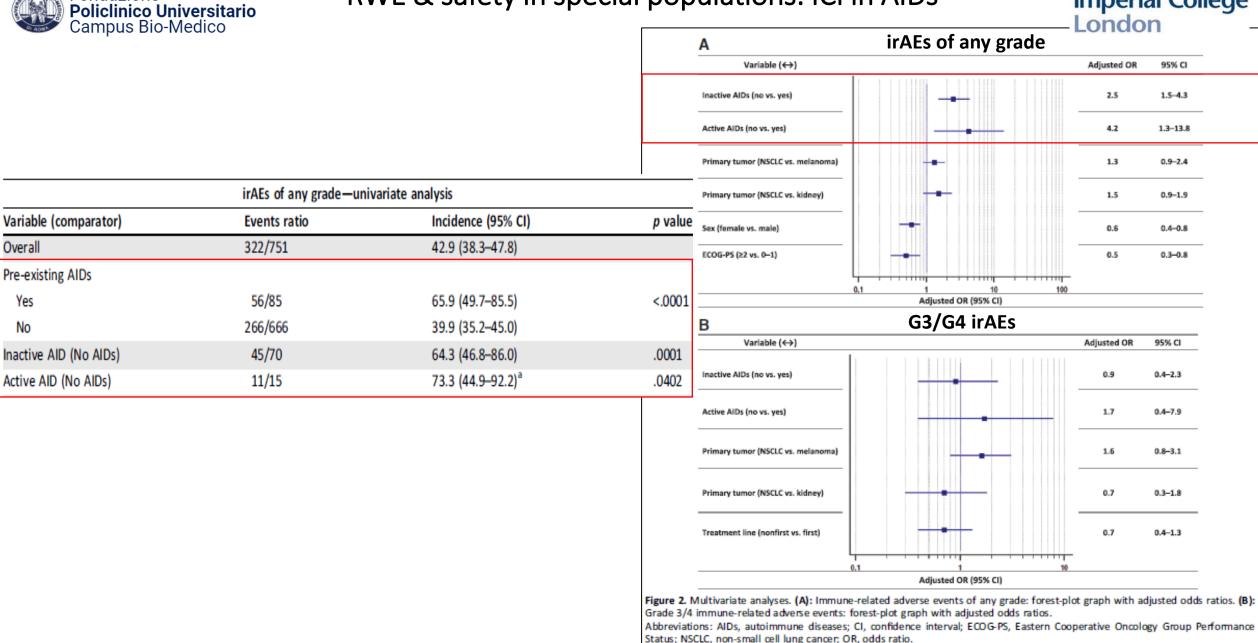
RWE & safety in special populations: ICI in AIDs

Oncologist[®]

Immuno-Oncology

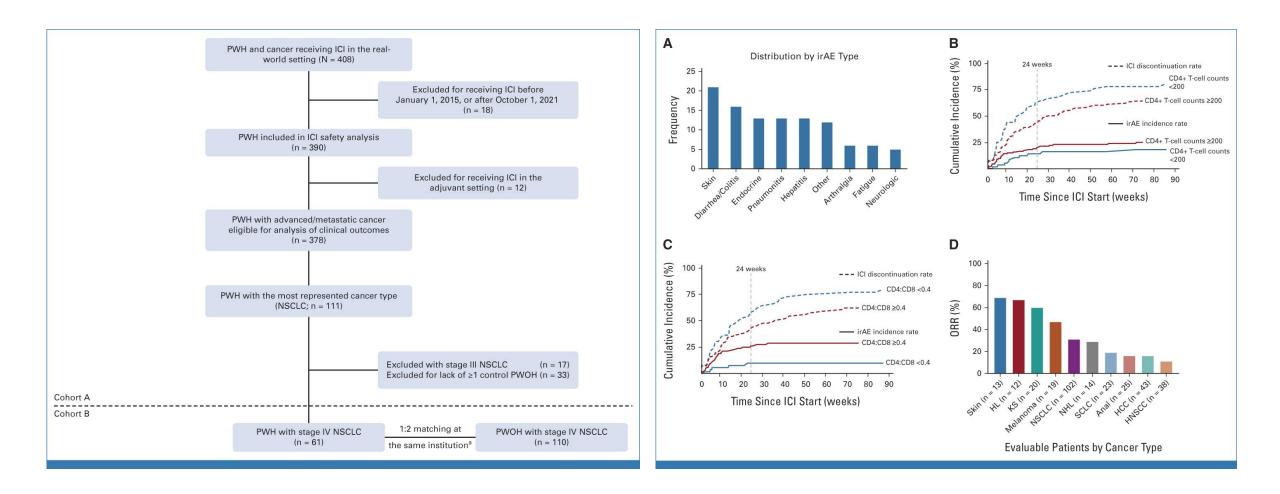
Clinical Outcomes of Patients with Advanced Cancer and Pre-Existing Autoimmune Diseases Treated with Anti-Programmed Death-1 Immunotherapy: A Real-World Transverse Study

Alessio Cortellini D^{a,b} Sebastiano Buti,^c Daniele Santini,^d Fabiana Perrone,^c Raffaele Giusti,^e Marcello Tiseo,^c Melissa Bersanelli,^c Maria Michiara,^c Antonino Grassadonia,^f Davide Brocco,^g Nicola Tinari,^f Michele De Tursi,^f Federica Zoratto,^h Enzo Veltri,^h Riccardo Marconcini,ⁱ Francesco Malorgio,^j Carlo Garufi,^j Marco Russano,^d Cecilia Anesi,^d Tea Zeppola,^d Marco Filetti,^e Paolo Marchetti,^{e,k} Andrea Botticelli,^e Gian Carlo Antonini Cappellini,^k Federica De Galitiis,^k Maria Giuseppa Vitale,¹ Roberto Sabbatini,¹ Sergio Bracarda,^m Rossana Berardi,ⁿ Silvia Rinaldi,ⁿ Marianna Tudini,^o Rosa Rita Silva,^o Annagrazia Pireddu,^p Francesco Atzori,^p Rita Chiari,^q Biagio Ricciuti,^q Daniela Iacono,^r Maria Rita Migliorino,^r Antonio Rossi,^s Giampiero Porzio,^{a,b} Katia Cannita,^b Valeria Ciciarelli,^{t,b} Maria Concetta Fargnoli,^{t,b} Paolo Antonio Ascierto,^u Corrado Ficorella^{a,b} Table 2. List of pre-existing autoimmune disease and immunosuppressant treatments Specifications AIDs and treatments n (%) Pre-existing AIDs 85 Thyroid disorders 10 GBD, 51 51 (60) hypothyroidism after AIT Dermatologic 11 PSO, 2 vitiligo, 1 14 (16.4) lichen planus Rheumatologic 10 (11.8) 2 PMR, 2 SLE, 4 AR, 1 vasculitis Gastrointestinal/hepatic 4 (4.7) 3 CD, 1 PSC Neurologic 1(1.2)1 Al optic neuritis Nephrologic 1 (1.2) 1 membranous glomerulonephritis 1 GBS and PSO, 1 Multiple site 4(4.7)MG and AIT, 1 PSO and AIT, 1

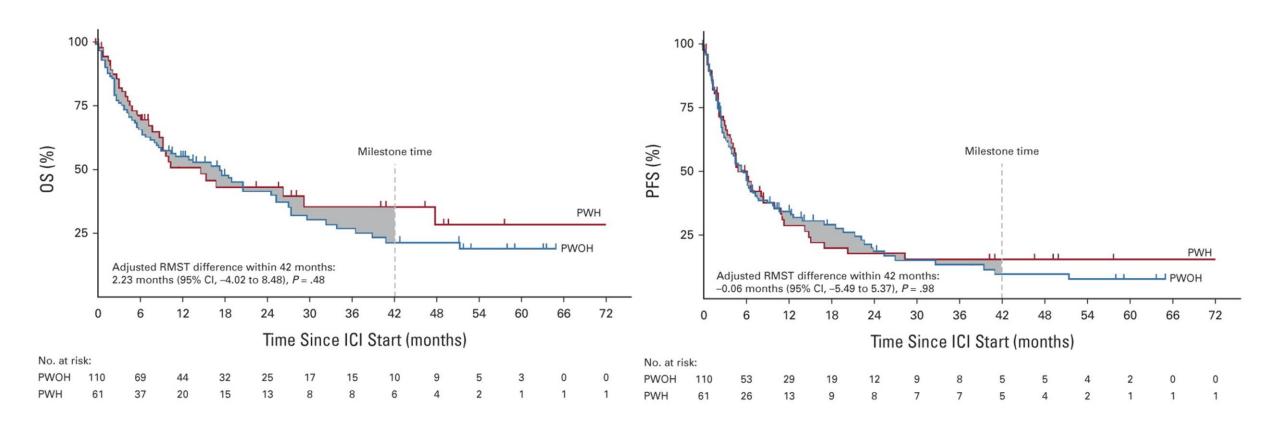

		sciero derina and Arr
Clinically active AIDs	15	
Dermatologic	6 (40)	6 PSO
Rheumatologic	6 (40)	4 RA, 2 PMR
Gastrointestinal	2 (13.3)	2 CD
Multiple site	1 (6.6)	1 scleroderma and AIT
Treatment of AIDs		
Corticosteroids	11 (73.3)	4 PSO, 1 scleroderma and AIT, 3 RA, 2 PMR, 1CD
Other immunosuppressants	3 (20)	1 RA, 2 PSO
Combinations	1 (6.6)	1 CD

roiditis; CD, Crohn's disease; GBD, Graves-Basedow disease; GBS, Guillain-Barre syndrome; MG, myasthenia gravis; PMR, polymyalgia rheumatica; PSC, primary sclerosing cholangitis; PSO, psoriasis; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus.

Imperial College

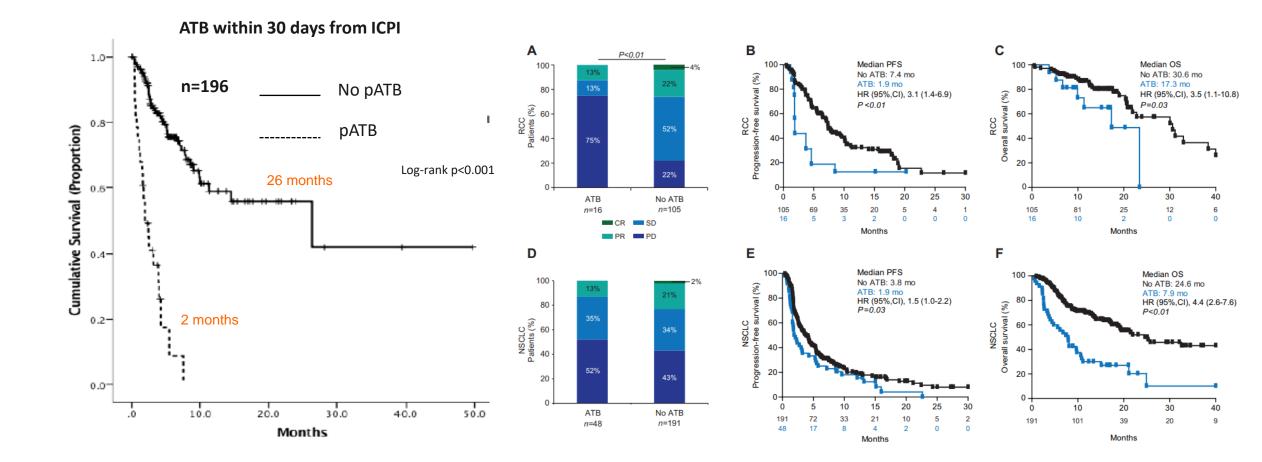


Fondazione


RWE & safety in special populations: HIV

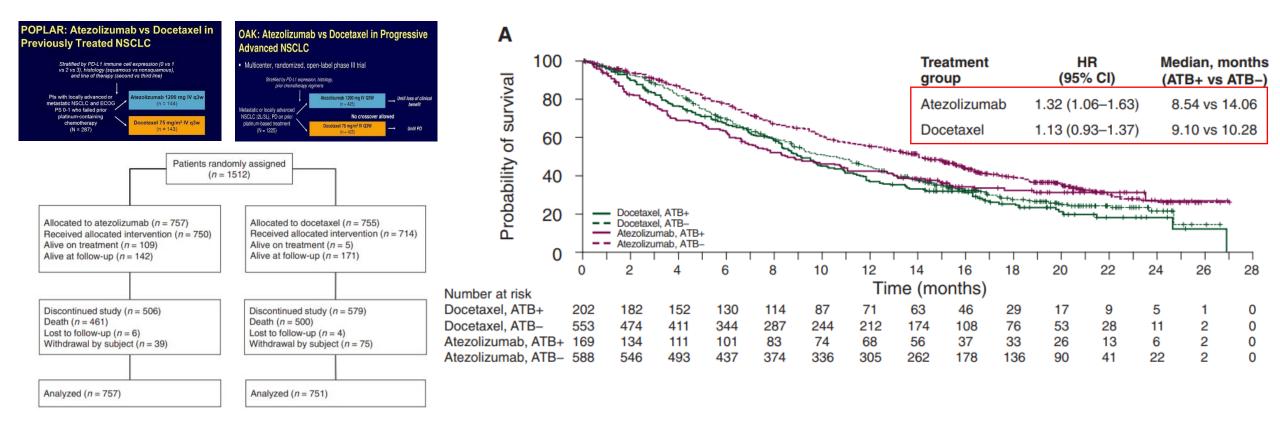
Imperial College London

RWE & safety in special populations: HIV

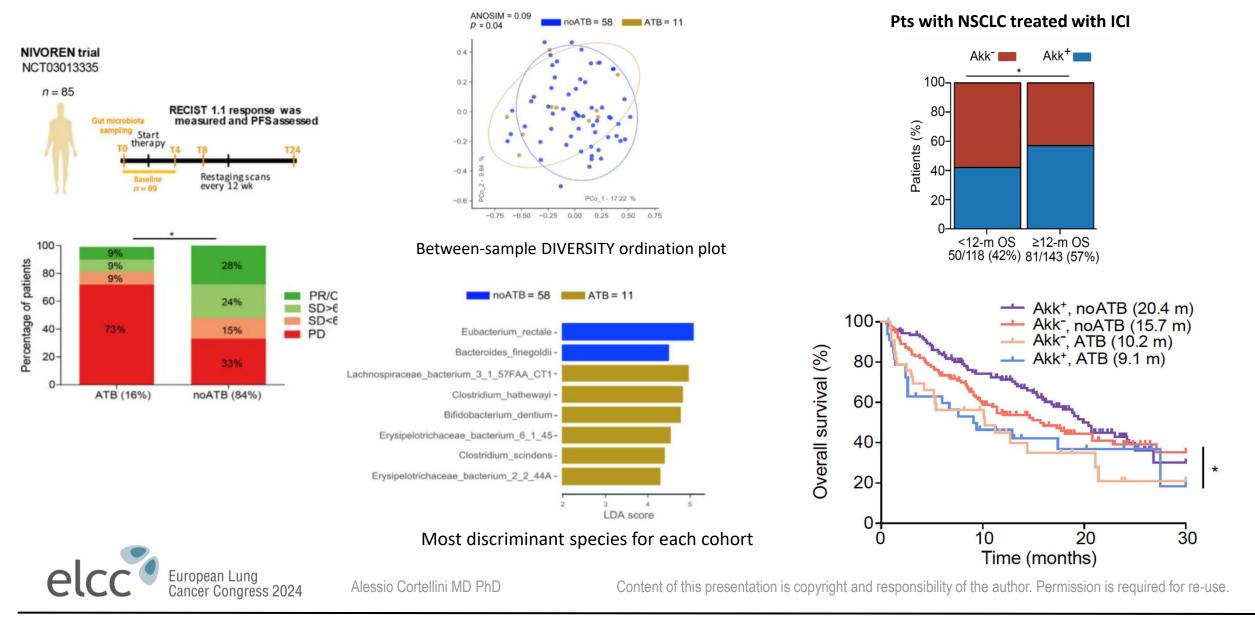


Imperial College London

RWE & new insights: the "ATB story"



RWE & new insights: the "ATB story"



"ATB story": mechanistic evidence

Imperial College London

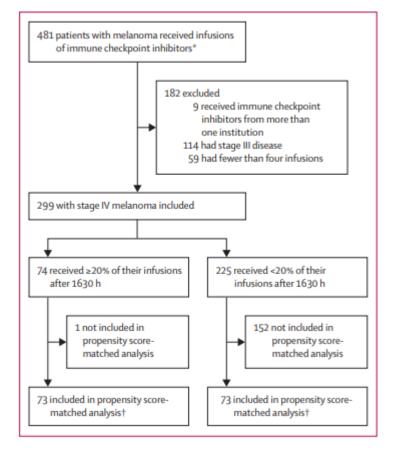
De Rosa L, et al. Eur Ur. 2020; Derosa L, ASCO 2021

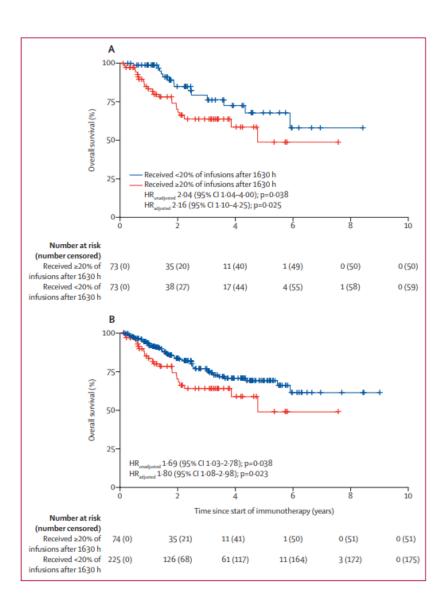
• Real-world evidence (RWE): definition and characteristics.

• RWE examples: "effectiveness" study, special/underrepresented populations, new insight/hypothesis.

• Pitfalls of RWE, beware of selection bias.

• RWE, decision making and health technology assessment (HTA).

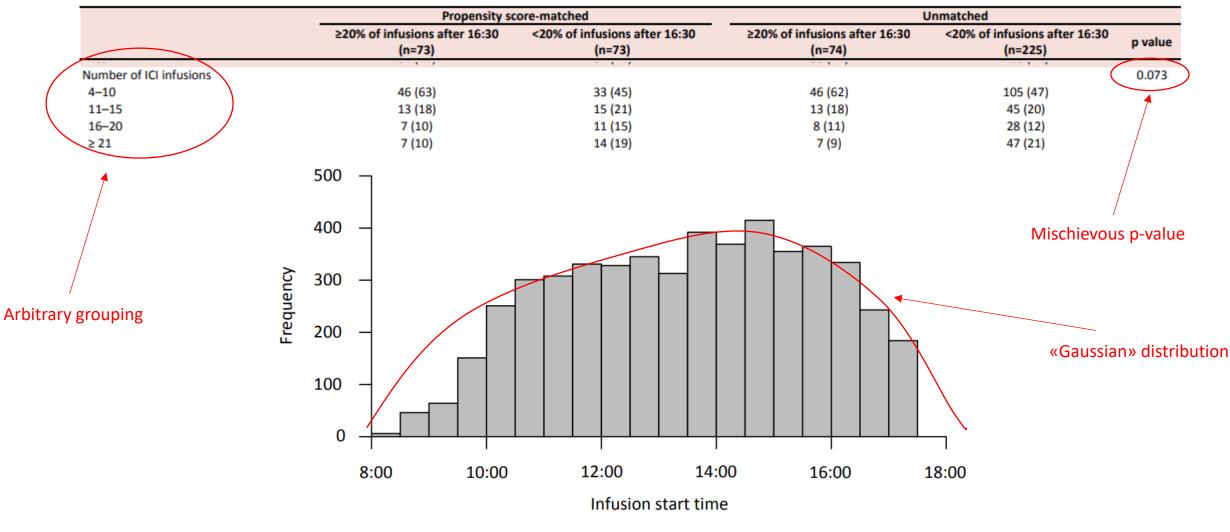

- Imperial College London
- Basically seen in all observational studies, depends on the manner in which the study population is selected.
- Mainly given to the differential distribution of measurable (and unmeasurable) variables across the subgroups.
- Mitigation strategies:
 - Clear definition of the study population and group(s) of interest.
 - Choice of the right comparison (exposed vs unexposed) -> similar as much as possible.
 - Multivariable analysis and matching strategies (depending on the outcomes/observations).
 - DESCRIBE! DESCRIBE! DESCRIBE! Patients' characteristics to draw conclusions.

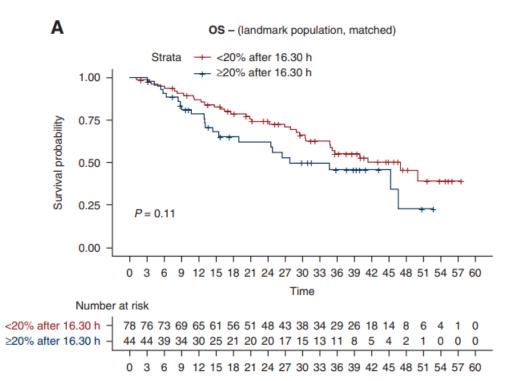


⋺҉

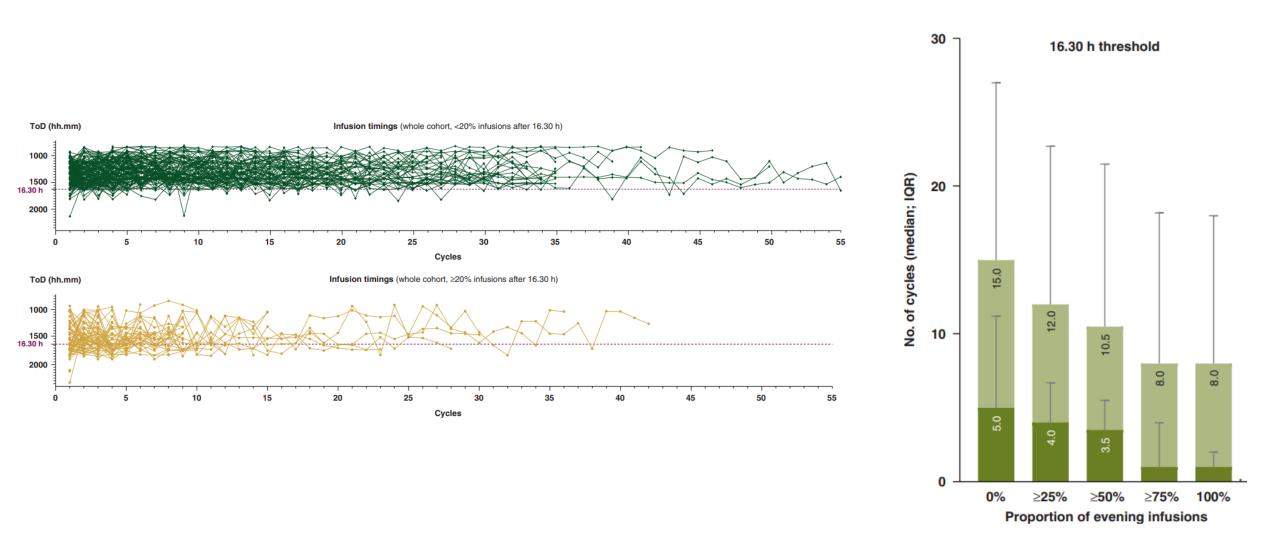
Imperial College London

Effect of immunotherapy time-of-day infusion on overall survival among patients with advanced melanoma in the USA (MEMOIR): a propensity score-matched analysis of a single-centre, longitudinal study

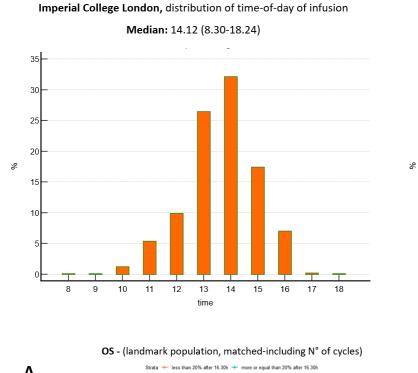



Figure S2: Frequency plot of immunotherapy infusion start times.

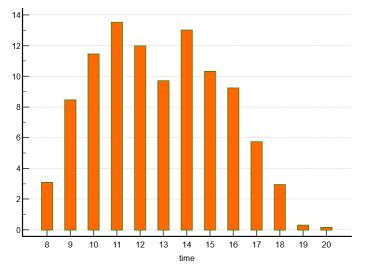
Strata

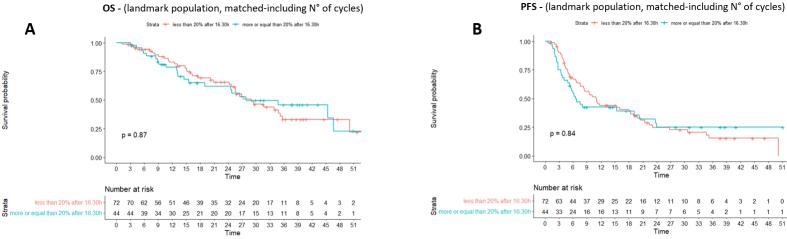

	Overall		Overall population		
	population		<20% after ≥20% after		
	262 N° (%)	16.30h N=195 (%)	16.30h N=67 (%)	P value	
Number cycles		14-135 (70)	14-07 (70)		
Median	6	8	5		
(Range)	(1-55)	(1-55)	(1-42)	P=0.0201	
1-3	82 (31.3)	59 (30.3)	23 (34.3)		
4-10	86 (32.8)	53 (27.2)	33 (49.3)		
11-15	24 (9.2)	19 (9.7)	5 (7.5)	P=0.0009	
16-20	21 (8.0)	20 (10.3)	1 (1.5)	N .	
≥21	49 (18.7)	44 (22.6)	5 (7.5)	Ν /	
AGE, (years)				\wedge	
Median (range)	69 (42-96)	69 (45-92)	68 (42-96)	P = 0.5050	
< 70 years old	143 (54.6)	103 (52.8)	40 (59.7)		
≥ 70 years old	119 (45.4)	92 (47.2)	27 (40.3)	P = 0.3300	
Biological sex					
Male	131(50.0)	101 (51.8)	30 (44.8)	P = 0.3225	
Female	131 (50.0)	94 (48.2)	37 (55.2)	F = 0.3223	
ECOG-PS					
0 - 1	210 (80.2)	158 (81.0)	52 (77.6)	P = 0.5464	
> 2	52 (19.8)	37 (19.0)	15 (22.4)	F = 0.0404	
Histology					
Adenocarcinoma	208 (79.4)	153 (78.5)	55 (82.1)		
Squamous	35 (13.4)	28 (14.4)	7 (10.4)	P = 0.7192	
Carcinoma NOS/others	19 (7.3)	14 (7.2)	5 (7.5)		
Smoking status					
Never smokers	19 (7.3)	18 (9.4)	1 (1.5)		
Former/current smokers	240 (92.7)	174 (90.6)	66 (98.5)	P = 0.0335	
Missing	3	3	-		
CNS metastases					
No	199 (76.0)	150 (76.9)	49 (73.1)	P = 0.5321	
Yes	63 (24.0)	45 (23.1)	18 (26.9)	1 - 0.5521	
Bone metastases					
No	178 (67.9)	137 (70.3)	41 (61.2)	P = 0.1711	
Yes	84 (32.1)	58 (29.7)	26 (38.8)	1 - 0.1711	
Liver metastases					
No	231 (88.2)	172 (88.2)	59 (88.1)	P = 0.9747	
Yes	31 (11.8)	23 (11.8)	8 (11.9)	r = 0.9747	
PD-L1 TPS					
50-89%	121 (46.2)	90 (46.2)	31 (46.3)	P = 0.9870	
≥ 90%	141 (53.8)	105 (53.8)	36 (53.7)	P = 0.98/0	
EGFR mutational status					
Wild type	250 (99.2)	187 (99.4)	63 (98.4)		
Mutant ¥	2 (0.8)	1 (0.6)	1 (1.6)	P = 0.4441	
Unknown	10	7	3		
Other actionable biomarkers					
KRAS mutations	98 (48.8)	71 (49.3)	27 (47.4)		
BRAF V600E	8 (4.0)	4 (2.8)	4 (7.0)		
Met exon 14 skipping	5 (2.5)	3 (2.1)	2 (3.5)	D - 0.5011	
Others*	8 (4.0)	5 (3.5)	3 (5.3)	P = 0.5844	
None identified	82 (40.8)	61 (42.4)	21 (36.8)		
Unknown	61	51	10		
Median TMB (mut/mega-base)					
Median (range)	10.6 (0-26.0)	10.6 (2.3-56.2)	10.6 (0-26.0)	P = 0.8214	
Available patients	141	96	45	P = 0.8214	

Time



Imperial College London



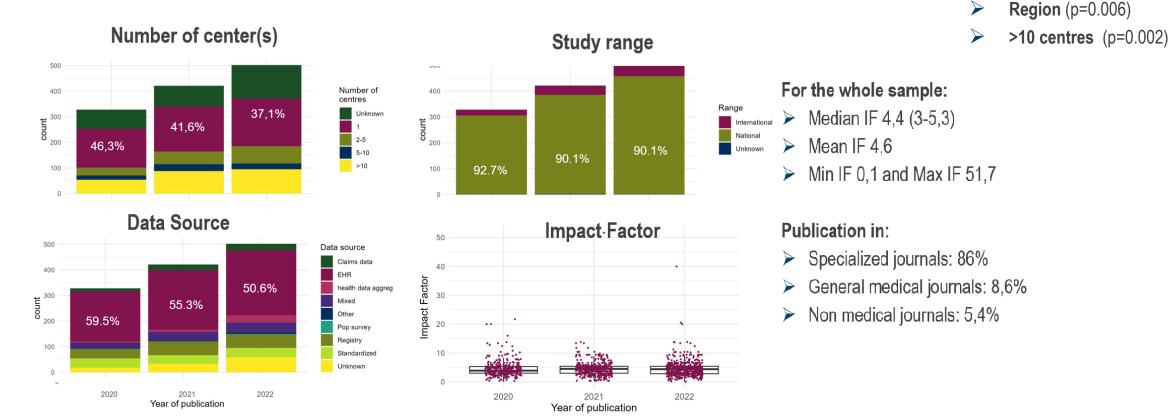


Imperial College London

Dana Farber Cancer Centre, distribution of time-of-day of infusion Median: 13.11 (8.14-23.32)

Cortellini A, et al. Annals of Oncolgy 2022

The down-side of RWE


Imperial College London

Assuming IF as the most reliable proxy

Covidence-assisted systematic "mapping" review of RWE on TT between 2020 and 2022 → 1251 studies included!

- Number of centers / national-basis
- Data source
- IF

ADAPTED from Cortellini A, ESMO 2023; Pellat A, et al. ESMO 2023

The down-side of RWE

Imperial College London

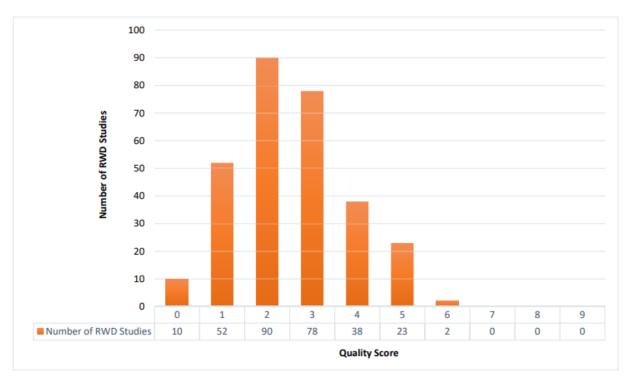


Fig. 1. Histogram of the distribution of total scores for RWD studies appraised using the Newcastle Ottawa Scale.

Original Research

Real-world outcomes associated with new cancer medicines approved by the Food and Drug Administration and European Medicines Agency: A retrospective cohort study

Jemma M. Boyle ^{a,1}, Gemma Hegarty ^{b,1}, Christopher Frampton ^c, Elizabeth Harvey-Jones ^d, Joanna Dodkins ^d, Katharina Beyer ^e, Gincy George ^e, Richard Sullivan ^{d,f}, Christopher Booth ^{g,2}, Ajay Aggarwal ^{a,d,f,*,2}

Newcastle Ottawa Scale (NOS) for cohort studies (0-9):

- Selection of the study groups (representativeness of the exposed and non-exposed cohorts, ascertainment of exposure, no outcome at baseline)
- Comparability of groups (for design and analysis)
- **Outcome** (assessment methodology, proper follow-up for all cohorts,

ADAPTED from Cortellini A, ESMO 2023; Boyle JM, et al. EJC 2021; Murad MH, BMJ Evid Based Med 2018; Wells G, The Ottawa Health Research Institute, 2011

293 RWE studies for 45 drugs for FDA and EMA approved indications

Improve reporting/quality is KEY

Imperial College London

35 reporting recommendations on:

- title,
- introduction,
- methods,
- results,
- discussion and conclusions,
- final considerations

ESMO Guidance for Reporting Oncology real-World evidence (GROW)

ESMO-GROW Checklist for Authors and Reviewers

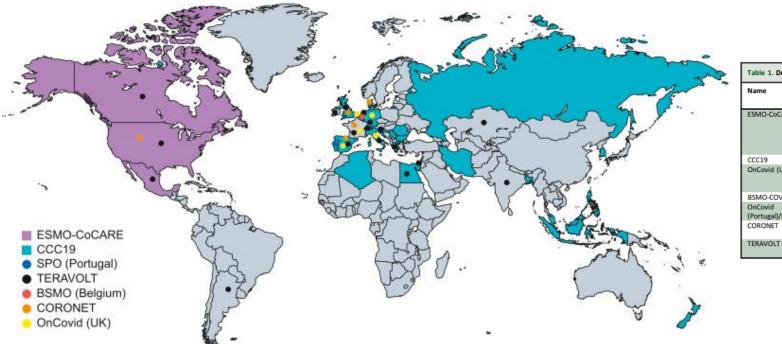
This checklist integra	tes all ESMO-GROW recommendation and could be used by authors and reviewers when assessing the reporting standards of a real-world evidence	e study i	in Oncol	ogy.	
"Yes, fully reported" "Yes, partially report "Not reported" – The	IOW checklist, the following offerin are considered: The recommendation is adequating considered, and the "The recommendation is adequating considered, and a considered, recommendation is adapticable for the case, but it uses not considered.				
Name of Author/Ret	dewer: Date:	1	1	1	
Title of Manuscript or Identifier:		es, fully aported	es, partially sported	B	lot applicable
	Recommendations	Yes, fully reported	Yes, part reported	Not	Not.
1. Title					-
Consider including	ide relevant key terms referring to the study type, study population, objectives, data sources and outcomes, depending on the study. the terms 'real-workf' or 'observational'	0	0	0	\bigcirc
2. Introduction	entific rationale for the research question(s), providing concise background information on previous core evidence from systematic	\sim	\sim	\sim	
reviews, meta-anal	yses, clinical trials and/or real-world evidence studies	\cup	\cup	\cup	\bigcirc
2.2: Identify the ga evidence that is ex	ps in evidence and explain why and how they can be suitably addressed by real-world evidence research. Specify the new pected from the current study	\odot	\odot	\odot	\bigcirc
2.3: Briefly introduc	te the aim(s) of the study	\bigcirc	O	\odot	\bigcirc
3. Methods					
	, design, data sources and variables	0			-
3.1: Provide the stu	dy research question(s) including a description of the patients or the object under study and the target outcome(s)	Q	Q	Q	\bigcirc
3.2: Provide the stu	idy objective(s) and consider classifying the type of research as descriptive and/or analytical (explanatory or predictive)	\odot	O	\odot	\bigcirc
3.3: Provide releva	nt information to describe and classify the study design used to address the research question	\bigcirc	\odot	\circ	\bigcirc
3.4: Give a clear de	efinition of the eligibility criteria used to select the patients or objects under study, particularly regarding cancer-related aspects	0	0	0	\bigcirc
	cific type and purpose of real-world data source(s) used, providing a detailed description and the reason(s) why the source was riate for the study objectives	\circ	0	0	\bigcirc
3.6: When multiple from separate data	real-world data sources are used, provide details on interoperability, including identification of duplicated cases or data linkage bases	Õ	Õ	O	\bigcirc
3.7: Provide details data extraction, cle	and timings of source and study data management. Consider specifying methods of raw data collection, updates and completeness, aning and/or guality controls and validation	Õ	Õ	Õ	Õ
	etails on database and/or study registration, governance, ownership, metadata and full data accessibility in the main text or	Ŏ	Ŏ	Ŏ	Ŏ
	a source of each core variable, its definition, if the variable was derived or coded, and describe how the derivation or coding was	Ŏ	Ŏ	Ŏ	Ŏ
3.10: Specify the ti	me points of core variables in relation to the cancer disease trajectory	O	Ô	O	\bigcirc
3.11: Provide a con endpoints	nplete list of core variables included in the study. Variables can be grouped as baseline characteristics, exposure and outcomes or	Ŏ	Õ	Ŏ	Ŏ
<u> </u>	r-related studies, provide details on biomarker description, timing, and methods of assessment and analytical validation	Ŏ	Ŏ	Ŏ	Ŏ
Statistical analysi	s and artificial intelligence methods			-	
3.13: Summarise th	e main aspects of the statistical analysis	\odot	\odot	\odot	\bigcirc
3.14: When applica	ble, provide details on the pre-planned sample size requirements and power of the study	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3.15: Specify the pr	re-planned strategies to identify and mitigate the main sources of bias	\bigcirc	O	\bigcirc	\bigcirc
3.16: Clearly distin	guish prespecified from post hoc analyses, especially for subgroup analyses	\bigcirc	O	\bigcirc	\bigcirc
	nation on internal and external validity, as well as any sensitivity analyses	\bigcirc	\odot	O	\bigcirc
3.18: For analytical explanation of any	studies, the full version of the statistical analysis plan should be provided in the supplementary material, including a brief amendments	\bigcirc	0	\bigcirc	\bigcirc
	ble, specify which machine learning, deep learning or alternative artificial intelligence method has been used	\bigcirc	\bigcirc	\odot	\bigcirc
	ng real-world data analysis with artificial intelligence (e.g. machine learning and deep learning) algorithms, include sects on data pre-processing techniques, feature engineering strategies and model development	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	rtificial intelligence model explainability and interpretability, and present the plan for integration into clinical practice, if applicable	\bigcirc	\circ	O	\circ
3.22: When applica	ble, briefly describe the multidisciplinary team required for the study and explain how these needs were met	\bigcirc	Ó	\bigcirc	\bigcirc

ESMO-GROW flowchart for real-world evidence studies in oncology

	Dataset 1	Dataset 2+ (if applicable)	
Data Source	Dataset name and setting Individual (n)	Dataset name and setting Individual (n) or aggregated data	If multiple dataset linkage or merging
Eligibility	Cases included (n) Subgroup A (n) Subgroup B (n) () Cases included (n) Subgroup A (n) Subgroup B (n)	Data sources linkage or merging [identify here the encounter variable(s)]	Missing encounter variable(s) (n) Duplicates (n) Misclassification (n) Exclusion criteria Dataset 1 Reason a (n) Reason b (n) () Dataset 2+ (fi applicable) Reason a (n) Reason b (n) ()
Analysis	Cases for analysis (n) Subgroup A (n) Subgroup B (n) ()	Final data cleaning	Exclusion on data cleaning Misclassification (n) Missing core variables (n) Loss to follow-up (n) Missing survival data (n) Others (n)

• Real-world evidence (RWE): definition and characteristics.

• RWE examples: "effectiveness" study, special/underrepresented populations, new insight/hypothesis.

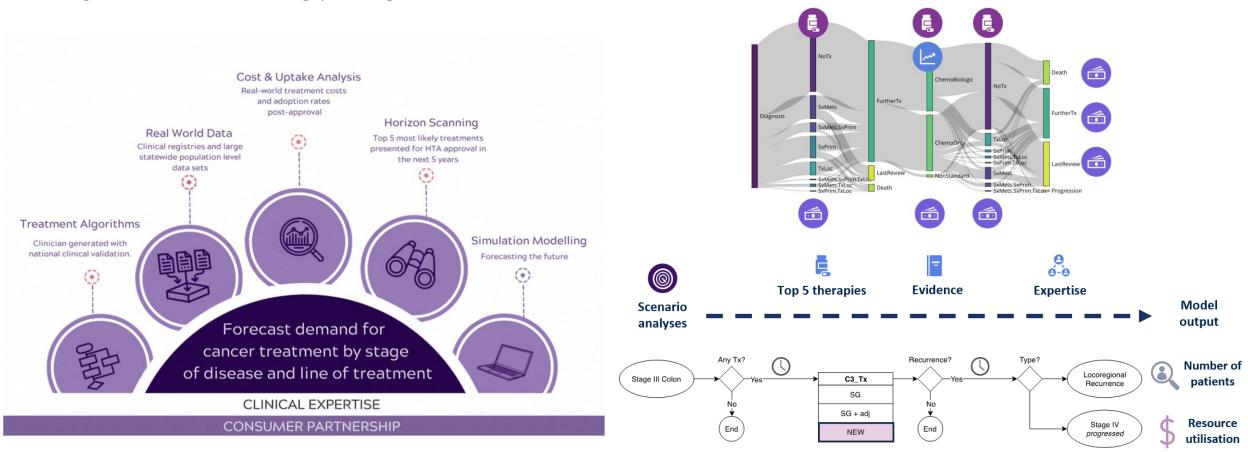

• Pitfalls of RWE, beware of selection bias.

• RWE, decision making and health technology assessment (HTA).

RWE, decision making and HTA

Registry-based response guided decision-making and guidelines (at international levels) during the COVID19 pandemic

Name	Starting date	Geography	Number of participating centers	Number of patients included	Collaborations established
ESMO-CoCARE	March 2020	Europe Asia Africa	43	2366	CCC19 BSMO SPO OnCovid.UK CORONET
CCC19	March 2020	North America	120+	19 275	ESMO-CoCARE, OnCovid
OnCovid (UK)	February 2020	Europe	37	3820	ESMO-CoCARE CCC19 NCI
BSMO-COVID ^a	March 2020	Belgium	19	928	ESMO-CoCARE
OnCovid (Portugal)/SPO	March 2021	Portugal	10	276	ESMO-CoCARE
CORONET	March 2020	Europe, North America	18	1968	ESMO-CoCARE; various individual groups
TERAVOLT	March 2020	Europe America, North Africa Asia	92	1491	CCC-19


Imperial College London

RWE, decision making and HTA

PRIMECAT: evidence-based forecasts of the population health economic impact of new cancer treatments in Australia to help HTA agencies in decision making/planning

EMA (2015) \rightarrow patient registry initiative: to explore the expansion of the use of registries by supporting a systematic and standardized approach to the risk-benefit evaluation of drugs.

EMA Committee for Medicinal Products for Human Use (CHMP) requested specific registries as a condition of the marketing authorization for 9% of all products centrally authorized between 2005 and 2013.

Review of policies of 6 EU HTA agencies on the use of RWD (wide heterogeneity):

- Initial reimbursement discussions (IRDs) → accepted but generally not prioritized over RCTs
- **Pharmacoeconomic analyses** (PEAs) → frequently requested for cost-effectiveness evaluations
- Conditional reimbursement schemes (CRSs) → some agencies allow that, but large-scale CRS implementations/re-evaluations are rare

RWD faces challenges related to data quality, standardization, and methodological rigor, with potential biases impacting HTA decisions.

Conclusion

Imperial College London

- RWE overall and in the context of lung cancer has an immense (partially un-used) potential.
- Can help confirming the "effectiveness" of a treatment.
- Can help with under-represented populations.
- Can help providing new insight/generating hypothesis
- Can Inform clinical decision making/regulatory level decision making
- Regulation, harmonization, standardization, quality and implementation are still points of concern.

Imperial College London

THANK YOU!

Alessio Cortellini

alessiocortellini@gmail.com X/twitter: @ACortelliniMD