ORAL SERD

Alberto Zambelli

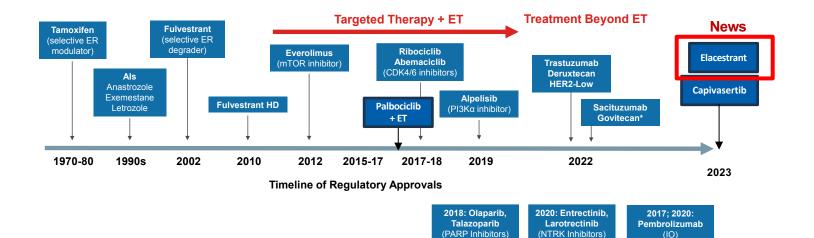
IRCCS Istituto Clinico Humanitas

Humanitas University

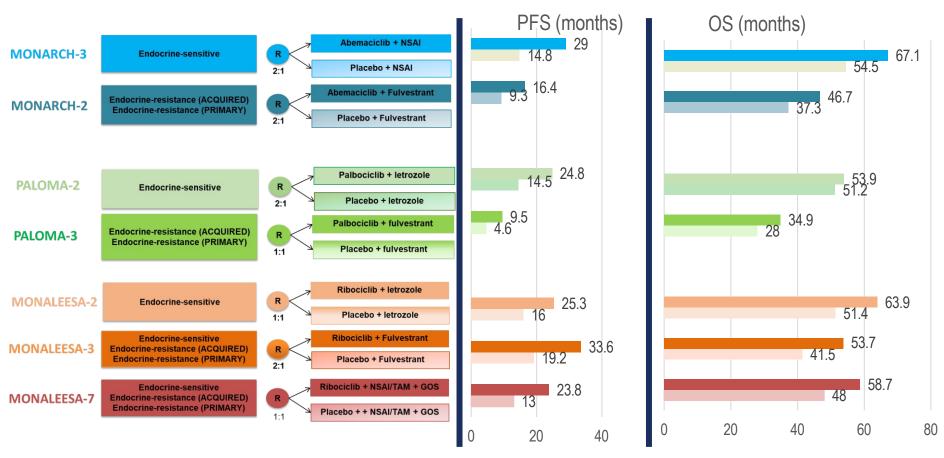
Rozzano (Milano)

In occasione della GIORNATA NAZIONALE del tumore mammario metastatico

2024 CARCINOMA MAMMARIO METASTATICO: QUALI NOVITÀ?

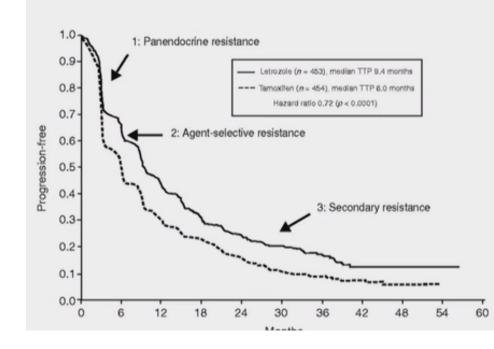

Conoscere le novità per assicurare il trattamento migliore a ogni paziente

> **11 OTTOBRE 2024 ROMA** Hotel Mediterraneo


DECLARATION OF INTERESTS

Honoraria for advisory board and consultancy: Roche, Novartis, Lilly, Seagen, Daiichi Sankyo, Astra Zeneca, Merck, Exact Sciences

EVOLVING TREATMENT LANDSCAPE OF ER+ MBC



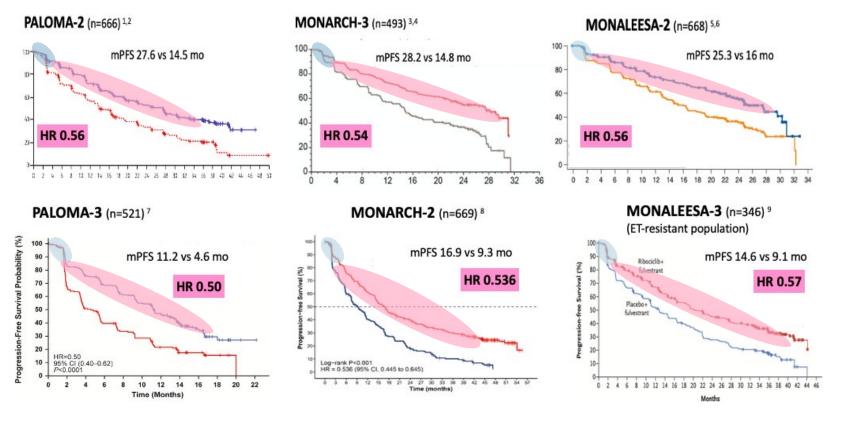
THE TRASFORMATIVE EFFECT OF CDK4/6 INHIBITORS

Finn RS, Lancet Oncol. 2015; Finn RS, N Engl J Med. 2016; G.N. Hortobagyi, NEJM 2016; Goetz, MP JCO 2017; Slamon, JCO 2018; Tripathy D, Lancet Oncol. 2018, Goetz MPI, ESMO 2022

BUT THE CDK4/6 ET-RESISTANCE STILL OCCURS

PRIMARY ENDOCRINE RESISTANCE

- Relapse while on the first 2 years of adjuvant ET
- PD within the first 6 months of first-line ET for ABC, while on ET

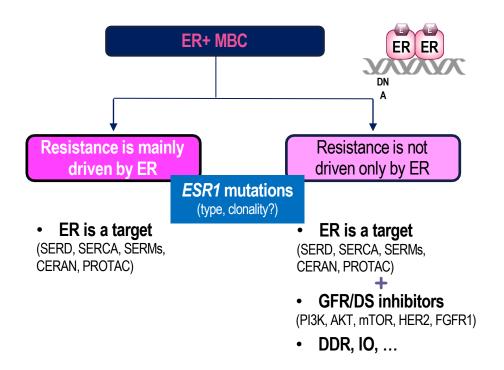

SECONDARY (ACQUIRED) ENDOCRINE RESISTANCE

- Relapse while on adjuvant ET but after the first 2 years
- Relapse within 12 months of completing adjuvant ET
- PD ≥6 months after initiating ET for ABC, while on ET

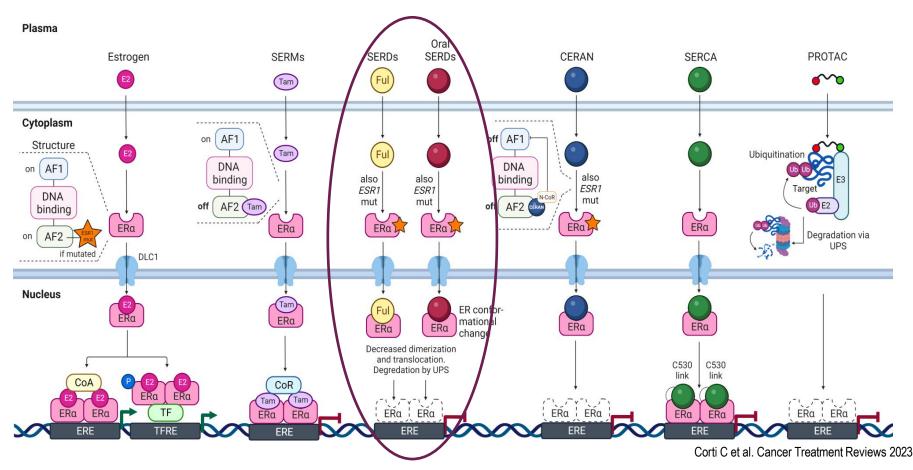
Cardoso, Ann Oncol 2020

Mouridsen, J Clin Oncol 2001; Ellis, The Oncologist 2004

THE CDK4/6 ET-RESISTANCE IS THE RULE



1 Finn, NEJM 2016. 2 Rugo, Breast Cancer Res Treat, 2019. 3 Goetz, JCO 2017. 4 Johnston, NPJ Breast Cancer 2019.


 G Hortobargy, NETM 2016:copyright and 7 Turner, NETM 2020.
 Permission is required for re-use.

 6 Hortobargyi, Ann Oncol 2018.
 8 Sledge, JAMA Oncol 2020.
 9 Slamon, NEJM 2020.

HOW TO DEAL WITH ENDOCRINE RESISTANCE

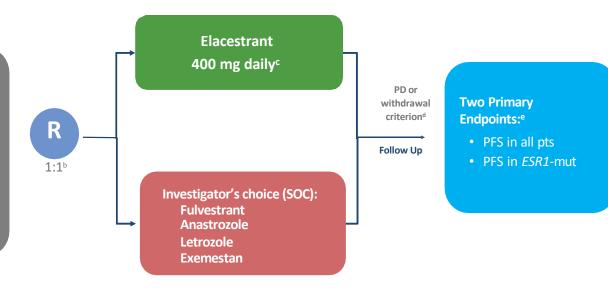
ORAL SERDs

ORAL SERDs IN THE CLINIC

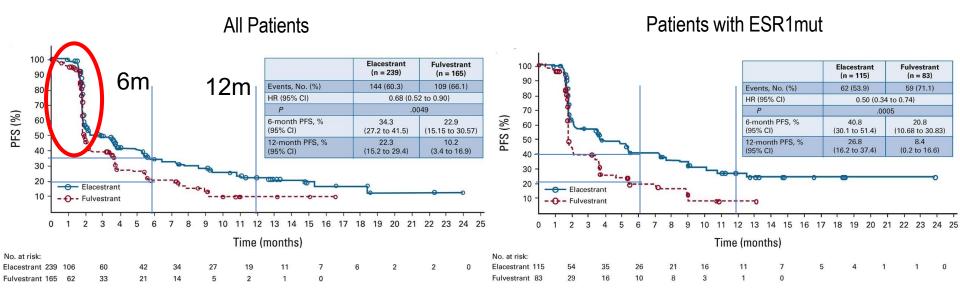
	EMERALD	SERENA-2	EMBER-3	AMEERA-3	acelERA
Treatment	Elacestrant	Camizestrant	Imlunestrant +/- abemaciclib	Amcenestrant	Giredestrant
Control Arm	fulvestrant / AIs	fulvestrant	fulvestrant / exemestane	fulvestrant / AIs / tamoxifen	fulvestrant / AIs
Phase (n)	Phase 3 (478)	Phase 2 (240)	Phase 3 (800)	Phase 2 (367)	Phase 2 (303)
Patients	Men or postmenopausal women	Postmenopausal women	Men or postmenopausal women	Men or women (any menopausal status)	Men or women (any menopausal status)
Prior CDK4/6i	Required (100%)	Permitted	Permitted	Permitted (79.7%)	Permitted (42%)
Allowed Prior Fulvestrant	YES	NO	NO	YES	YES
Allowed Prior Chemotherapy in mBC	YES	YES	NO	YES	YES
Data readout	Positive (Registrational)	Positive (Non-Registrational)	Ongoing	Negative	Negative

Al, aromatase inhibitor.

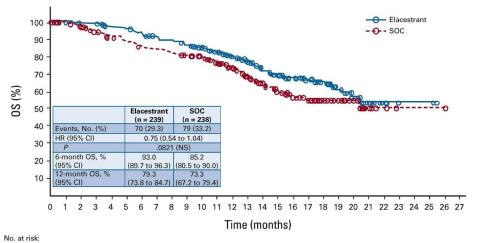
Bardia A, et al. Presented at: San Antonio Breast Cancer Symposium (SABCS) 2022; December 6-10, 2022; San Antonio, TX. Presentation GS3-01.


EMERALD: STUDY DESIGN

- Men and postmenopausal women with advanced/metastatic breast cancer
- ER-positive,^a HER2-negative
- Progressed or relapsed on or after 1 or 2 lines of endocrine therapy for advanced disease, one of which was given in combination with a CDK4/6i
- ≤1 line of chemotherapy for advanced disease
- ECOG PS 0 or 1

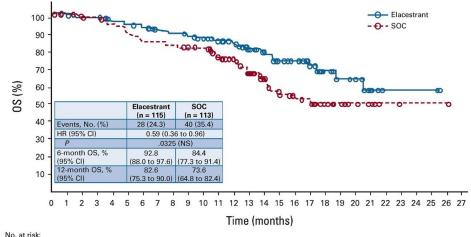


- ESR1-mutation status^f
- Prior treatment with fulvestrant
- Presence of visceral metastases



ESR1 mut 48%, Lung/liver mets 68%, CT in ABC 20%, Prior fulvestrant 30%

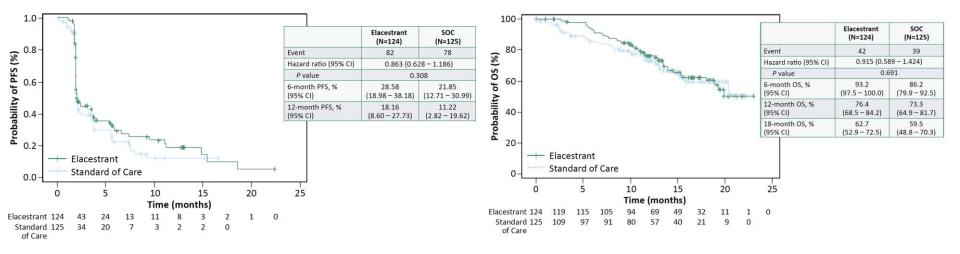
EMERALD PRIMARY ENDPOINT: PFS



EMERALD: OS (INTERIM ANALYSIS)

All Patients

Patients with ESR1mut


 Elacestrant 239
 233
 230
 229
 220
 218
 211
 202
 197
 191
 180
 166
 139
 118
 98
 89
 78
 60
 49
 33
 22
 10
 5
 2
 2
 2
 0

 SOC
 238
 223
 216
 206
 164
 187
 179
 177
 173
 163
 157
 144
 118
 96
 78
 67
 49
 42
 31
 23
 15
 6
 3
 1
 1
 1
 1
 0

Elacestrant	115	112	111	111	105	103	101	95	93	90	86	80	68	55	45	40	36	25	17	13	11	4	2	2	2	2	0	
SOC	113	106	101	101	96	90	86	86	84	79	77	68	56	44	33	27	22	19	14	10	6	4	2	1	1	1	0	

EMERALD: RESULTS IN ESR1 WT

OS

SUBGROUP ANALYSIS OF PFS

30% of pts receiving E had prior exposure to Fulv

				HR	95% CI	No.	Interaction
All patients ^a			C	.664	0.528 0.835	477	
ESR1 mutation	Yes		C	.531	0.378 0.743	228	.053
	No		C	.824	0.603 1.127	249	
Prior treatment with fulvestrant	Yes		C	.673	0.438 1.029	145	.970
	No		C	.668	0.508 0.877	332	
Presence of visceral metastasis	Yes		0	.665	0.507 0.869	321	.590
	No		C	.748	0.479 1.174	156	
Age group, years	< 65		C	.780	0.574 1.062	262	.190
	≥ 65		0	.548	0.386 0.773	215	
Race	White		0	.606	0.459 0.798	338	.400
	Asian		1	.091	0.456 2.642	32	
	Others		1	.075	0.309 3.586	14	
Region	Europe		0	.656	0.479 0.898	258	.700
	North America		0	.607	0.396 0.925	140	
	Asia		C).755	0.372 1.507	50	
Baseline ECOG performance status	0		C).727	0.542 0.975	278	.400
	1		C	.571	0.391 0.828	198	
Measurable disease at baseline	Yes		0	.676	0.528 0.863	383	.660
	No		C	.702	0.362 1.384	94	
No. of lines of prior endocrine therapy ^b	1		C	.705	0.517 0.959	270	.440
	2		C	.597	0.423 0.841	207	
No. of lines of prior chemotherapy ^b	0		C	.638	0.489 0.831	371	.200
	1		0	.863	0.543 1.359	106	
	Ļ						
	0	1		5		10	
	Ŭ	Elacestrant Better SOC Bette		0			
			71				

P for

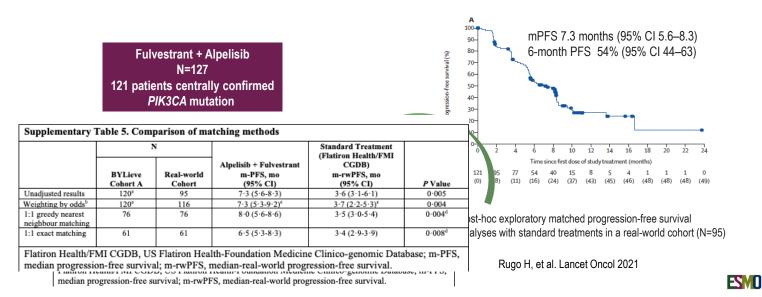
PFS ANALYSIS BY DURATION OF CDK4/6i

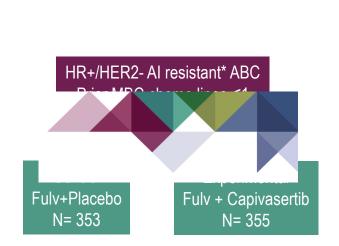
Duration on CDK4/6i in the Metastatic Setting	< 6 Mo	onths	6- 12	Months	12 - 18	Months	≥ 18 Months		
All Patients	Elacestrant (n=29)	SOC Hormonal Therapy (n=29)	Elacestrant (n=52)	SOC Hormonal Therapy (n=46)	Elacestrant (n=52)	SOC Hormonal Therapy (n=40)	Elacestrant (n=98)	SOC Hormonal Therapy (n=119)	
Median PFS, months (95% Cl)	3.55 (1.87 - 9.43)	1.87 (1.74 - 2.20)	1.91 (1.84 - 1.94)	1.87 (1.81 - 2.14)	3.52 (1.87 - 7.29)	1.84 (1.84 - 1.87)	5.45 (2.33 - 8.61)	3.29 (1.87 - 3.71)	
PFS rate at 6 months, % (95% CI)	34.54 (9.75 - 59.33)	19.52 (4.21 -34.83)	14.91 (3.12 - 26.70)	12.79 (0.46 - 25.11)	35.40 (19.80 - 51.00)	12.83 (0.09 - 25.56)	44.72 (33.24 - 56.20)	25.12 (15.13 -35.10)	
PFS rate at 12 months, % (95% CI)	23.03 (0.00 - 47.78)	11.71 (0.00-24.15)	7.46 (0.00 - 19.35)	NA	24.78 (8.07 - 41.49)	4.28 (0.00 - 12.33)	26.70 (15.61 - 37.80)	8.23 (0.00 - 17.07)	
PFS rate at 18 months, % (95% Cl)	11.51 (0.00 - 31.71)	11.7 (0.00 -24.15)	7.46 (0.00 - 19.35)	NA	18.59 (2.22 - 34.95)	NA	21.03 (9.82 - 32.23)	4.11 (0.00 - 11.33)	
Hazard ratio (95% CI)	0.709 (0.34	7 - 1.405)	1.070 (0.6	38 - 1.814)	0.367 (0.20	04 - 0.654)	0.703 (0.4	82 - 1.019)	
ESR1-mut	Elacestrant (n=9)	SOC Hormonal Therapy (n=8)	Elacestrant (n=25)	SOC Hormonal Therapy (n=21)	Elacestrant (n=23)	SOC Hormonal Therapy (n=25)	Elacestrant (n=55)	SOC Hormonal Therapy (n=56)	
Median PFS, months (95% Cl)	1.87 (1.64)	1.87 (1.68 - 5.55)	1.91 (1.87 - 2.79)	1.84 (1.68 - 3.45)	5.49 (1.94)	1.84 (1.84 - 1.94)	8.61 (5.45 - 16.89)	2.10 (1.87 - 3.75)	
PFS rate at 6 months, % (95% CI)	NA	14.29 (0.00 -40.21)	5.46 (0.00 - 15.78)	7.22 (0.00 - 20.35)	49.32 (25.11 - 73.53)	13.65 (0.00 - 30.31)	58.57 (43.02 - 74.12)	27.06 (13.05 - 41.07)	
PFS rate at 12 months, % (95% Cl)	NA	0	0	0	36.99 (9.28 - 64.70)	6.82 (0.00 - 19.43)	35.79 (19.54 - 52.05)	7.73 (0.00 - 20.20)	
PFS rate at 18 months, % (95% CI)	NA	0	0	0	24.66 (0.00 - 51.69)	NA	30.68 (13.94 - 47.42)	0	
Hazard ratio (95% Cl)	1.565	1.565 (0.424 - 5.769) 1.122 (0.547 - 2.347) 0.302 (0.1		(0.126 - 0.677)	0.46	6 (0.270 - 0.791)			

SAFETY PROFILE

AEs ^c Occurring in \geq 10% of	Elace	strant	To	tal	Fulve	strant		AI
Patients in Any Arm	All Grades	Grade 3/4	All Grades	Grade 3/4	All Grades	Grade 3/4	All Grades	Grade 3/4
Nausea	83 (35.0) ^d	6 (2.5)	43 (18.8)	2 (0.9)	26 (16.1)	0	17 (25.0)	2 (2.9)
raugue	43 (19.0)	2 (0.6)	43 (10.0)	2 (0.9)	SS (21.7)	1 (0.0)	0 (11.0)	1 (1.3)
Vomiting	45 (19.0) ^e	2 (0.8)	19 (8.3)	0	12 (7.5)	0	7 (10.3)	0
Decreased appetite	35 (14.8)	2 (0.8)	21 (9.2)	1 (0.4)	12 (7.5)	0	9 (13.2)	1 (1.5)
Arthralgia	34 (14.3)	2 (0.8)	37 (16.2)	0	28 (17.4)	0	9 (13.2)	0
Diarrhea	33 (13.9)	0	23 (10.0)	2 (0.9)	14 (8.7)	1 (0.6)	9 (13.2)	1 (1.5)
Back pain	33 (13.9)	6 (2.5)	22 (9.6)	1 (0.4)	16 (9.9)	1 (0.6)	6 (8.8)	0
AST increased	31 (13.1)	4 (1.7)	28 (12.2)	2 (0.9)	20 (12.4)	2 (1.2)	8 (11.8)	0
Headache	29 (12.2)	4 (1.7)	26 (11.4)	0	18 (11.2)	0	8 (11.8)	0
Constipation	29 (12.2)	0	15 (6.6)	0	10 (6.2)	0	5 (7.4)	0
Hot flush	27 (11.4)	0	19 (8.3)	0	15 (9.3)	0	4 (5.9)	0
Dyspepsia	24 (10.1)	0	6 (2.6)	0	4 (2.5)	0	2 (2.9)	0
ALT increased	22 (9.3)	5 (2.1)	23 (10.0)	1 (0.4)	17 (10.6)	0	6 (8.8)	1 (1.5)
						SOC		
Event		Elacestrant (n	= 237)	Total ($n = 22$	29) Fu	vestrant (n = 1	61)	Al (n = 68)
Any AE		218 (92	.0)	197 (86.0))	144 (89.4)		53 (77.9)
Grade 3 and 4 ^a		64 (27	.0)	47 (20.5))	33 (20.5)		14 (20.6)
Grade 5 ^b		4 (1.7	')	6 (2.6)		5 (3.1)		1 (1.5)
Leading to dose reduction		7 (3 ())	0		0		Not applicable
Leading to study drug disconti	nuation	15 (6.3	3)	10 (4.4)		6 (3.7)		4 (5.9)

EMERALD demonstrated that elacestrant as a single agent reduces the risk of progression or death, as compared with current SOC single-agent endocrine therapies.

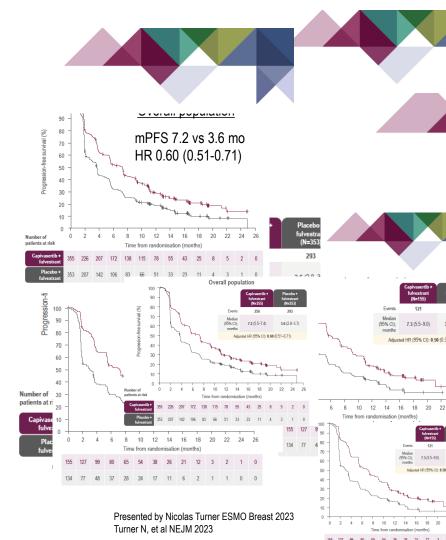

Therefore, when single-agent endocrine therapy is appropriate at a later line, elacestrant is a more effective option than fulvestrant or an Al


Competitive treatments in case of PI3K and/or AKT alteration with double ET/TT

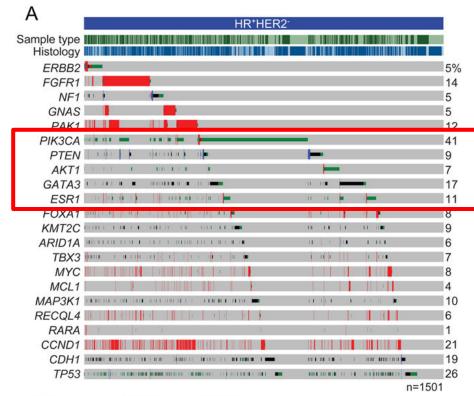
ALPELISIB + ET

BYlieve Ph2 Trial

Alpelisib following progression on or after previous therapy, including CDK4/6 inhibitors



CAPIVASERTIB + ET


CAPITELLO-291: Phase 3 trial

Patients with a pathway alteration don't do better with capivasertib than the WT population.

The Genomic Landscape of ER+ BC

Genomic sequencing of 1,501 HR+ BC, with detailed clinical information and treatment outcomes.

In 692 BC previously exposed to HT, an increased number of alterations in genes involved in the MAPK pathway and in the ER transcriptional machinery has been observed

ELACESTRANT APPROVAL

FDA approves elacestrant for ER-positive, HER2negative, ESR1-mutated advanced or metastatic breast cancer

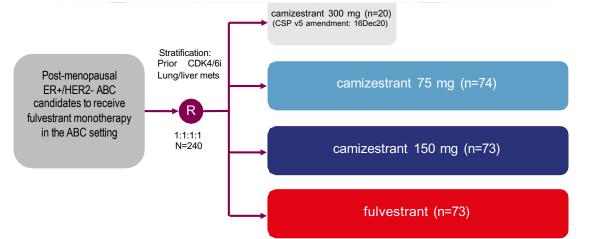
EUROPEAN MEDICINES AGENCY Search TENCE MEDICINES HEALTH Medicines - Human regulatory -Veterinary regulatory - Committees - News & events - Partners & networks - About us -Home > Medicines > Orserdu < Share RSS RSS Orserdu Authorised This medicine is elacestrant authorised for use in Human the European Union Medicine DETERMINA SISF/UPC/AR/AA Rep.143/2023 1. Le confezioni del seguente medicinale per uso umano di nuova autorizzazione, corredate di numero di AIC e classificazione ai fini della fornitura: AGENZIA ITALIANA DEL FARMACI - ORSERDU

EMA approval

AIFA approval

descritte in dettaglio nell'Allegato, che fa parte integrante del presente provvedimento, sono collocate in apposita sezione della classe di cui all'art. 12, comma 5 della legge 8 novembre 2012 n. 189. denominata Classe C (nn), dedicata ai farmaci non ancora valutati ai fini della rimborsabilità.

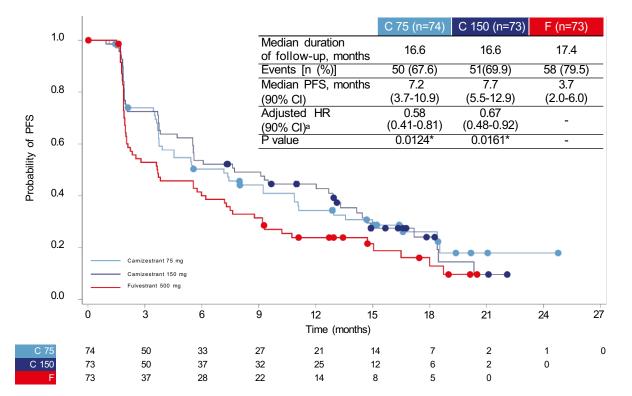
FDA approval


UFFICIO PROCEDURE CENTRALIZZATE

CLASSIFICAZIONE DI MEDICINALI PER USO UMANO AI SENSI DELL'ART. 12 COMMA 5 DEI DECRETO-LEGGE 13 SETTEMBRE 2012 N. 158 CONVERTITO NELLA LEGGE 8 NOVEMBRE 2012 N. 189

SERENA-2: TRIAL DESIGN

Key inclusion/exclusion criteria:


- · Recurrence or progression on at least 1L of ET
- No prior fulvestrant or oral SERD in ABC
- No more than one line of ET in ABC setting
- · No more than one line CT in ABC setting
- · Measurable and non-measurable disease

ESR1 mut 37% Prior CDK4/6i 50% Lung/liver mets 58% CT in ABC 20%

- Primary endpoint: PFS (investigator assessment*)
- · Secondary endpoints: CBR24, ORR, OS, safety
- Translational endpoints: serial ctDNA analysis including ESR1m, serial CTCs analysis

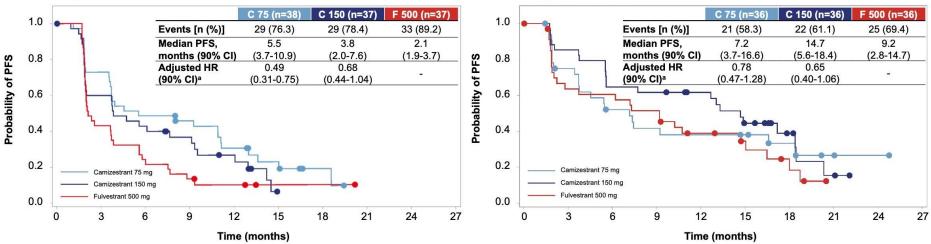
PFS BY INVESTIGATOR ASSESSMENT

*Statistically significant; aHRs adjusted for prior use of CDK4/6i and liver/lung metastases

CDK4/6i: CDK4/6 inhibitor; CI: confidence interval; HR: hazard ratio; PFS: progression-free survival

PFS BY DETECTABLE ESR1M

ESR1m detectable at baseline


C 150 (n=46) C 75 (n=22) C 150 (n=26) F 500 (n=35) C 75 (n=51) F 500 (n=37) 1.0 1.0 Events [n (%)] 15 (68.2) 22 (84.6) 31 (88.6) Events [n (%)] 34 (66.7) 28 (60.9) 26 (70.3) 6.3 7.2 5.8 7.2 Median PFS, 9.2 2.2 Median PFS. months (90% CI) (3.4 - 12.9)(3.7 - 12.9)(1.9 - 3.8)months (90% CI) (3.7 - 10.9)(3.8 - 14.9)(2.0-10.7)0.8 0.8 Probability of PFS Probability of PFS Adjusted HR 0.33 0.55 Adjusted HR 0.78 0.76 (90% CI)a (0.18 - 0.58)(0.33 - 0.89)(90% CI)a (0.50 - 1.22)(0.48 - 1.20)0.6 0.6 0.4 0.4 0.2 0.2 Camizestrant 75 mo Camizestrant 75 mg Camizestrant 150 mg Camizestrant 150 mg Fulvestrant 500 mg Fulvestrant 500 mg 0.0 0.0 12 18 21 12 15 18 21 24 27 0 3 6 9 15 24 27 3 6 9 0 Time (months) Time (months) C 75 22 15 10 51 23 19 15 0 8 6 4 0 C 75 34 10 6 2 1 1 26 46 C 150 18 15 14 0 C 150 31 21 17 15 2 0 9 3 2 9 4 35 F 15 10 6 3 2 1 0 37 21 18 16 11 6 4 1 0 E

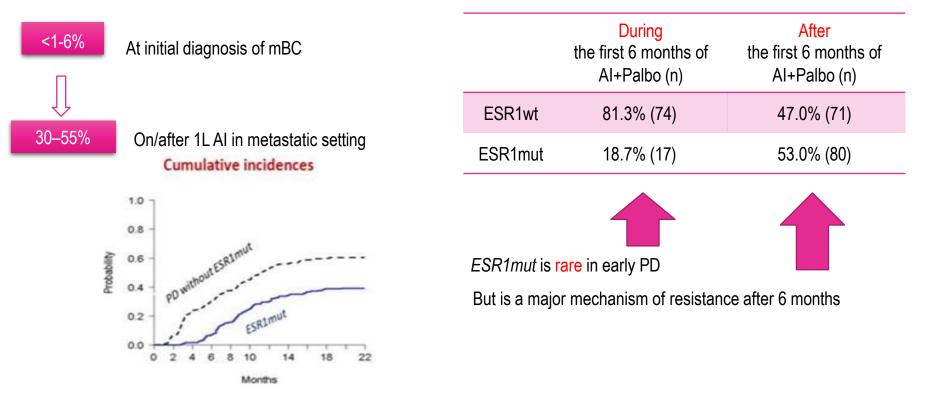
ESR1m not detectable at baseline

Olivera M, et al. SABCS 2022

PFS BY PRIOR CDK4/6i

Prior CDK4/6i

No prior CDK4/6i


ONGOING PHASE III TRIALS IN MBC

	Trial ID	Drug	Patient cohort(s)	Sample size	Primary Endpoint	Setting
	NCT04964934 (SERENA-6)	camizestrant	E: camizestrant + palbociclib or abemaciclib; C: anastrozole or letrozole + palbociclib or abemaciclib	300	mPFS	ER+/HER2-, ESR1 mutated
	NCT04711252 (SERENA-4)	camizestrant	E: camizestrant + palbociclib C: anastrazole + palbociclib	1342	mPFS	ER+/HER2- mBC, ≥ 1L (Al or TAM pre-treated)
	NCT04975308 (EMBER-3)	imlunestrant	E: imlunestrant E: imlunestrant + abemaciclib C: exemestane or fulvestrant	860	mPFS	ER+/HER2- mBC, ≥ 1L
	NCT05306340 (evERA)	giredestrant	E: giredestrant + everolimus C: exemestane + everolimus	320	mPFS	ER+/HER2- mBC, ≥ 1L (after CDK4-6i)
	NCT04546009 (persevERA)	giredestrant	E: giredestrant + letrozole- matching placebo + palbociclib C: letrozole + giredestrant- matching placebo + palbociclib	978	mPFS	ER+/HER2- mBC, without therapeutic options
2623	NCT94470266 (AMF 2A-5)	amcenestrant	E: amcenestrant + letrozole- matching placebo C: letrozole + amcenestrant matching placebo	1066	mPFS	ER+/HER2- mBC, ≥ 1L (SERD naïve)

Adapted from Corti C et al. Cancer Treatment Reviews 2023

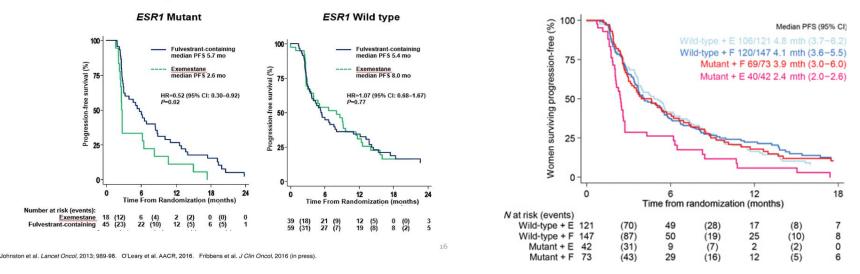
HOW TO IMPLEMENT ORAL SERDs IN THE CLINIC

ESR1-MUT AS MECHANISM OF ACQUIRED RESISTANCE

Berger et al. BMJ Open. 2022;12:e055821. Bidard F-C et al. Poster presented at: SABCS; December 7–10, 2021; Virtual. Poster OT2-11-05.

PREVALENCE OF ESR1-mut (ctDNA) in ER+ mBC

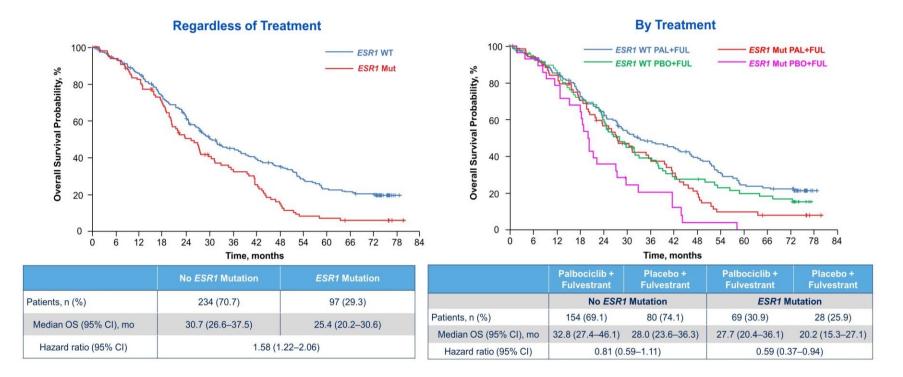
Trial	Study treatment	Patient population	ESR1 mutation frequency
MONALEESA-21	Letrozole +/- Ribociclib	1st line ER+ MBC	4.0%
BOLERO-2 ²	Exemestane +/- Everolimus	ER+ MBC after PD on ET	28.8%
FERGI ³	Fulvestrant +/- Pictilisib	ER+ MBC after PD on ET	40.0%
PALOMA-3⁴	Fulvestrant +/- Palbociclib	ER+ MBC after PD on ET	25.3%
SOFeA ⁴	Fulvestrant +/- Anastrozole	ER+ MBC after PD on ET	39.1%


1. Hortobagyi GN et al 2018 2.Chandarlapaty S et al 2016 3.Spoerkle JM et al 2016 4. Fribbens C et al 2016 5. Razavi et al Cancer Cell 2018

THE ROLE OF ESR1-mut

ESR1 Mutation Analysis by Digital PCR in the Randomized Phase III SoFEA Study

ESR1 Mutations and Overall Survival on Fulvestrant versus Exemestane in Advanced Hormone Receptor-Positive Breast Cancer: A Combined Analysis of the Phase III SOFEA and EFECT Trials MC

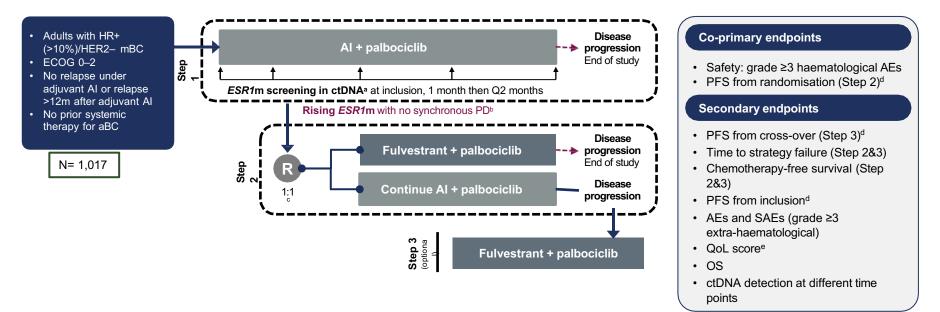

Nicholas C. Turner^{1,2}, Claire Swift², Lucy Kilburn³, Charlotte Fribbens^{1,2}, Matthew Beaney¹, Isaac Garcia-Murillas¹, Aman U. Budzar⁴, John F.R. Robertson⁵, William Gradishar⁶, Martine Piccart⁷, Gaia Schiavon⁸, Judith M. Bliss³, Mitch Dowsett^{1,2}, Stephen R.D. Johnston², and Stephen K. Chia⁹

Detection of ESR1-mut in baseline ctDNA is associated with inferior PFS and OS in pts with exemestane vs. fulvestrant.

ESR1 MUTATIONS ASSOCIATED WITH POOR PROGNOSIS

Cristofanilli M et al., ASCO 2021

TACKLING MOLECULAR OR CLINICAL PROGRESSION?

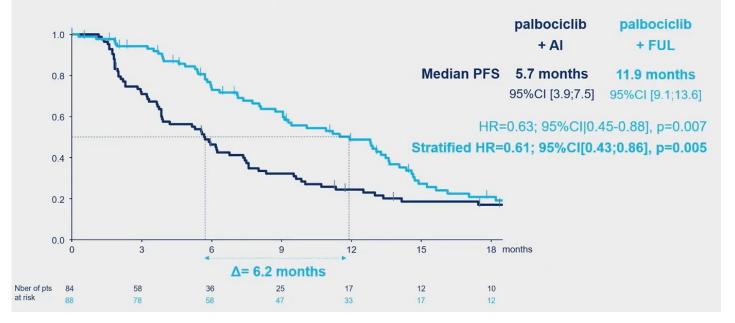

@ clinical progression?

@ acquirement of endocrine resistance (i.e. ESR1)?

PADA-1: STUDY DESIGN

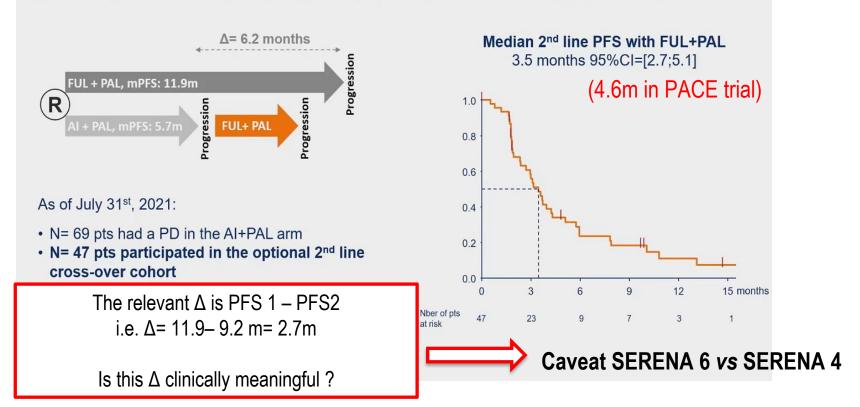
PAlbociclib and ctDNA for ESR1m detection (PADA-1) is a randomised, open-label, phase III trial that aimed to evaluate the safety and efficacy of a switch from AI to fulvestrant combined with palbociclib upon detection of rising ESR1m in ctDNA in patients with HR+/HER2– mBC

Carmen Criscitiello

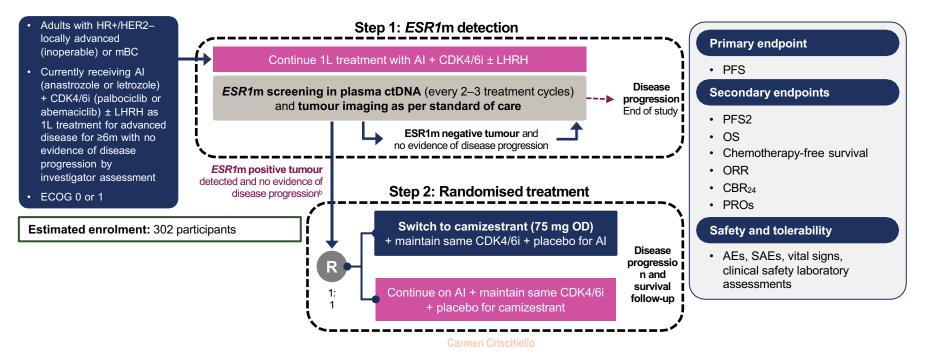

ontent of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Bidard F-C et al. Presented at ASCO Annual Meeting; May 29–31, 2020; Virtual. J Clin Oncol;38(suppl 15): Abstract 1010.

PADA-1: RESULTS


PADA-1: Primary analysis: Progression-Free Survival after randomization

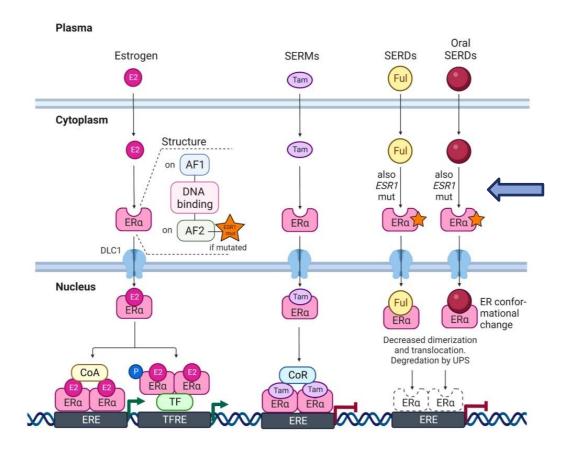
• Median FU in step #2: 26 months (range: 0-36m); N=136 PFS events


PADA-1: RESULTS

PADA-1: Progression-Free Survival in the optional cross-over cohort

SERENA-6: STUDY DESIGN

Ongoing randomised, double-blind study to evaluate the safety and efficacy of camizestrant in combination with CDK4/6i (palbociclib or abemaciclib) vs AI + CDK4/6i in pts with HR+/HER2– mBC upon detection of ESR1m without disease progression on 1L therapy



ontent of this presentation is copyright and responsibility of the author. Permission is required for re-us

ClinicalTrials.gov Identifier: NCT04964934; Bidard F-C et al. Poster presented at: SABCS; December 7–10, 2021; Virtual. Poster OT2-11-05.

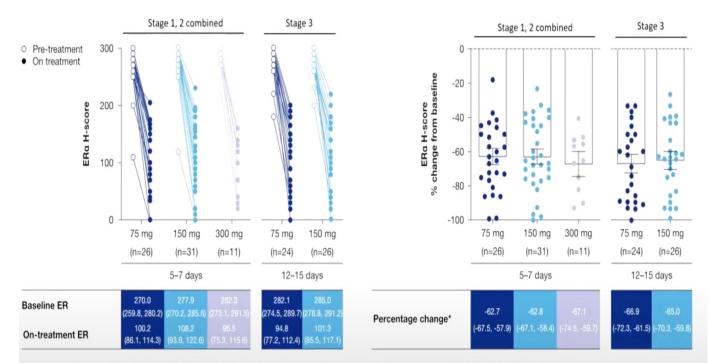
BRIDGING THE PRESENT (mBC) AND THE FUTURE (eBC)

BRIDGING THE PRESENT (mBC) AND THE FUTURE (eBC)

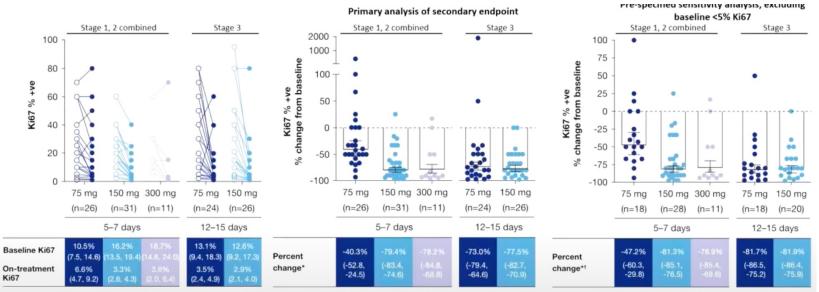
RATIONALE FOR ORAL SERDs USE IN THE EBC

Oral SERDs: more potent inhibitors of ER (both ESR1-mut and ESR1-wt), compared to AI and Tam, thus expecting efficacy to be translated also in the adjuvant setting

UNASWERED QUESTIONS: EARLY BC (Neoadj)


SERENA-3: A randomized pre-surgical window of opportunity study assessing dose and duration of camizestrant treatment in post-menopausal women with ER-positive, HER2-negative primary breast cancer

John FR Robertson MD¹, Teimuraz Gogitidze MD², Zaza Katashvili MD³, Juan Enrique Bargalló Rocha MD⁴, Ekaterine Arkania MD⁵, Iain Moppett MD⁶, Kwok-Leung Cheung MD⁷, Gia Nemsadze MD⁸, Maxine Ajimi PhD⁹, Itziar Irurzun Arana PhD⁹, Justin PO Lindemann MBChB, MBA⁹, Teresa Klinowska PhD¹⁰, Alastair Mathewson PhD⁹, Christopher J Morrow PhD⁹, Myria Nikolaou PhD⁹, Giorgi Dzagnidze MD, PhD¹¹.


- Camizestrant is a next-generation oral SERD and pure ER antagonist^{1,2}
- SERENA-1 (NCT03616587) demonstrated the safety, tolerability and preliminary clinical efficacy of a range of doses of camizestrant (25 to 450 mg) as monotherapy, with dose-dependent exposure^{3,4}
- SERENA-2 (NCT04214288) demonstrated the safety and superior efficacy of 75 and 150 mg camizestrant compared with fulvestrant⁵
- SERENA-3 (NCT04588298) explored the biological effects of 75, 150 and 300 mg camizestrant in post-menopausal women with ER+, HER2- primary breast cancer

% CHANGE FROM BASELINE (ER+)

• ER levels at baseline, and degree of degradation on treatment, are similar across 75, 150 and 300 mg doses.

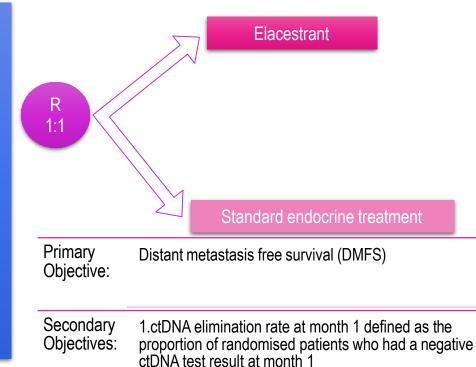
% CHANGE FROM KI67 BASELINE (ER+)

After 5–7d exposure, camizestrant 75 mg reduced Ki67 score to a lesser degree than 150 and 300 mg

After 12–15d exposure, camizestrant 75 and 150 mg reduced Ki67 score to a similar substantial degree (~82%)

· PK steady state does not necessarily translate to PD steady state

ONGOING PHASE 3 TRIALS IN EBC

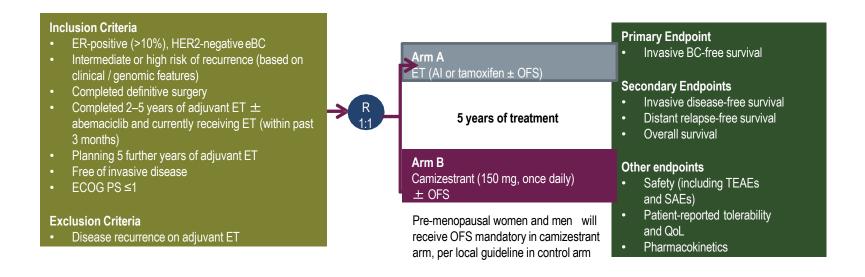

Trial ID	Drug	Phase	Patient cohort(s)	Sample size	Primary Endpoint	Setting
NCT05512364 (TREAT ctDNA)	Elacestrant	3	E: elacestrant monotherapy C: standard ET (the same pts were receiving at the time of ctDNA detection)	220	DMFS	High-risk (either stage IIB-III or ≥ypT1c and/or ypN+)
NCT04436744 (lidERA)	Giredestrant	3	E: giredestrant C: ET of physician's choice	221	iDFS	stage I-III
(🗙 §	Amcenestrant	3	E: amcenestrant C: tamoxifen	3738 (2 patients enrolled, prematurely discontinued)	iBCFS	pts who have discontinued adjuvant AI due to treatment-related toxicity
NCT05774951 (CAMBRIA1)	Camizestrant	3	E: camizestrant C: continue standard ET of investigator's choice	4300	iBCFS	High-risk eBC after at least 2 years (no more than 5 years) of ET

TREAT ctDNA (EORTC-2129-BCG)

Elacestrant vs standard ET in pts with ER+/HER2- BC and ctDNA relapse

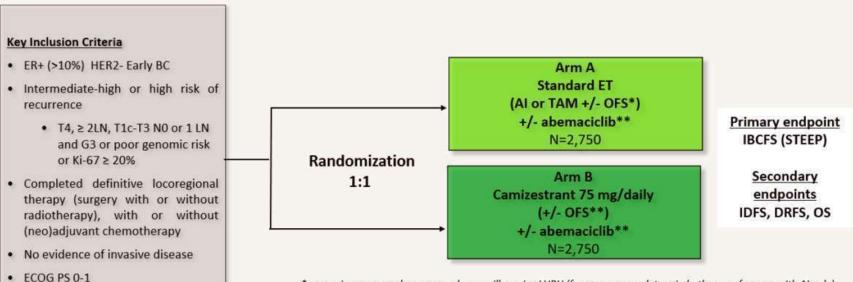
Key Eligibility Criteria

- Elevated risk of recurrence after definitive treatment for ER+ (≥ 10%), HER2- eBC, defined as either:
 - Stage IIB/III disease and completion of adjuvant chemotherapy, OR
 - Completion of at least 4 cycles of NACT and RD at surgery of ≥ ypT1c or ypN+
- <u>ctDNA+ by RaDaR assay</u>
- Patients must have received at least 2 years and up to 7 years of ET
- Previous adjuvant CDK4/6i or PARPi allowed (completed ≥12 months before registration)
- No prior treatment with SERDs or investigational ER antagonist



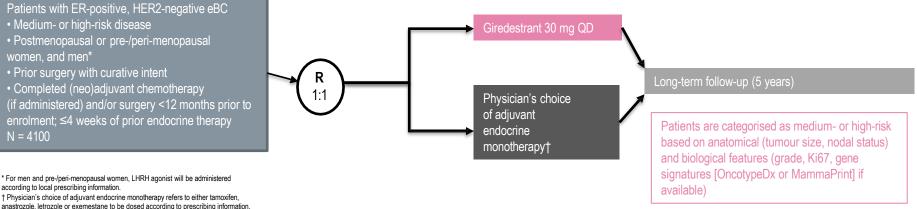
ClinicalTrials.gov Identifier: NCT05512354

CAMBRIA-1


Camizestrant as extended treatment following 2–5 years of standard ET

CAMBRIA-2

Camizestrant as upfront treatment in ER+/HEr2- high risk eBC



*pre-peri-menopausal women and men will receive LHRH (for women mandatory in both arms, for men with AI only)
**patients receiving abemaciclib will be capped at a planned 30% of total population

A study of giredestrant as single-agent adjuvant therapy

according to local prescribing information.

anastrozole, letrozole or exemestane to be dosed according to prescribing information.

Primary endpoint

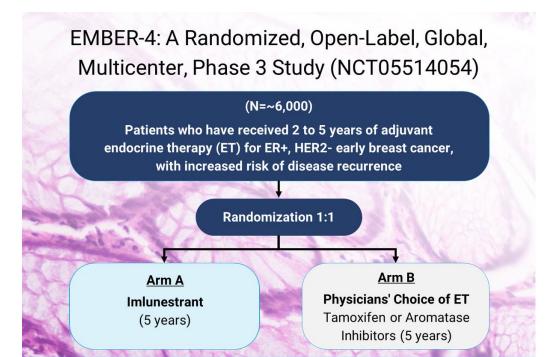
 Invasive disease-free survival (IDFS), excluding second primary non-breast cancers: time from randomisation to the occurrence of IDFS events.

Secondary endpoints

Overall survival

- IDFS (per STEEP[±]) including second primary non-breast cancer
- Disease free survival
- Distant recurrence-free interval

STEEP System as defined by Hudis CA, et al. J Clin Oncol 2007; 25:2127-2132


Locoregional recurrence-free interval

- Safety
 - Pharmacokinetics
 - Patient-reported outcomes

EMBER-4

A study of Imlunestrant as single-agent adjuvant therapy

The safety and efficacy of the investigational molecule being studied in this trial has not been established or approved for use

ClinicalTrials.gov NCT05514054

UNASWERED QUESTIONS: EARLY BC

1. Superior to approved ET in all comers?

- Ki67 reduction and CCCA @week 2: Giredestrant > Anastrozole (-80% vs -67%) in coopERA trial (Hurvitz et al ESMO 2021)

- Better adherence ? Advantage with Oral SERDs dose reduction possible unlike AI/TAM (MTD not reached in ph1 and lowest dose also potent)

2. SERD alone or SERD + Abem in High Risk pts ?

3. Optimal timing ? Upfront strategy (SERD vs AI/Tam) vs switch strategy (after 2y) vs Extended ET

4. Await resuts from on-going RCT

CONCLUSIONS

What we know so far:

- Greatest benefit in ESR1mut and prior long-responders to CDK4/6i
- Not an option in early progressors

Open questions:

- New 1L ET backbone? After 1L, in combo or as monotherapy?
- Tackling molecular or clinical progression? Clinical utility?
- Implementation in the early setting
- Use in combo (SERD+AI)?