

In occasione della GIORNATA NAZIONALE del tumore mammario metastatico

2024 CARCINOMA MAMMARIO METASTATICO: QUALI NOVITÀ?

Conoscere le novità per assicurare il trattamento migliore a ogni paziente

11 OTTOBRE 2024 ROMA Hotel Mediterraneo

Immunoterapia nel carcinoma mammario e ricerca clinica: risultati e nuovi orizzonti

> Paola Zagami, MD European Institute of Oncology IRCCS University of Milano Milan, Italy

Università degli Studi di Milano

OUTLINE

- Immunotherapy in metastatic breast cancer : current treatment landscape
- Immune-based combination treatments: PARPi, ADC, VEGFi, other immuno-agents
- Biomarkers of immunotherapy benefit in metastatic breast cancer
- Future perspectives of Immunotherapy in metastatic breast cancer

IMMUNOTHERAPY DEVELOPMENT IN BREAST CANCER

- Increasing number of trials investigating immunotherapeutic strategies in BC

- Both in advanced and early setting
- Shift of phase 1 towards phase 2 and 3 trials

BC subtype	Luminal A	Luminal B	HER2 - positive	Triple - negative
% of breast cancers	40%	20%	10-15%	10-15%
Receptors status	ER+PR+	ER+PR+/-	HER2+	ER-PR- HER2-
Proliferation				
Prognosis	Go			
Treatment	End			
			Anti-HER2 drugs	
			Chemotherapy	
				Immunotherapy

Adapted from Robert H. Vonderheide et al. Clin Cancer Research 2017

Summary of anti-PD-1/PD-L1 ICB						
Setting	BC subtypes					
	TNBC	Luminal	HER2			
Early	<i>Approved</i> for Pembrolizumab (2021) with NAC (pCR and EFS benefit)	Increased pCR with ICB in phase III trials (Pembrolizumab, Nivolumab) ESMO 2023	No difference in pCR rate (IMpassion 50) Ongoing trials			
Advanced	Approved for Pembrolizumab (2020) in 1st line with chemo for pts with PD-L1 + tumors (OS benefit) Ongoing trials with ADC	Modest activity Ongoing trials with CDK4/6i	Modest activity (PD-L1+?) Ongoing trials			
	Ongoing trials with iP/	ARP in gBRCA mutant		PANACE		
				Advance Trastuzu Up to 3 line HER		

DESTINY-Breast07: Study Design

 Multicenter, randomized, open-label, 2-part modular phase lb/II study; data presented from interim analysis of part 2 dose-expansion phase

PANACEA trial – advanced disease

San Antonio Breast Cancer Symposium®, December 4 -8, 2018

mTNBC: biology and heterogeneity

Molecular subtyping of TNBC

_ _ ... _ ... _ .

Perou, Nature 2000: Lehmann, JCI 2011: Curtis, Nature 2012: Lehmann, PLoS ONE 2016: Jiang, Cancer Cell 2019

San Antonio Breast Cancer Symposium®, December 4 -8, 2018

mTNBC: biology and heterogeneity

Immune microenvironment

Breast cancer is less immune activated than many other tumor types...

San Antonio Breast Cancer Symposium®, December 4 -8, 2018

mTNBC: biology and heterogeneity

TILs (%)

n Min

Q1

Q2

Q3

Max

Immune microenvironment

...but, compared to the other breast cancer subtypes, triple-negative BC is characterized by higher:

2,009 2,009

0.5

7.5

10

20

Tumor mutation burden

- - -- ---- - -

100 -80 -60 -40 -20 -0 -Overall ER+/HER2- HER2+ ER-/HER2-

Subtype

7.5 1

10

15 3.5

1.5

70

0.5

30

10 1.5

5.5

PD-L1 expression

TCGA, Nature 2012; Luen, Breast 2016; Lehmann, J Clin Invest 2011; Cimino Matthews, Hum Pathol 2013; Loi, JCO 2013; Loi, Ann Oncol 2014; Chen and Mellman, Immunity 2013; Mittendorf, Cancer Immunol Res 2014

256

2.5 0.5

20

75

30 12.5

12.5

256

1.5

5

65

mTNBC: biology and heterogeneity

Immune activation decreases in metastatic disease compared to early disease

С Immune selection Immune escape Breast Metastatic (first primary pretreated) tumour recurrence) ↑ Antigen ↓ Antigen Cancer cellpresentation presentation intrinsic \downarrow Tumour clonality ↑ Tumour clonality ↓ Intratumour features ↑ Intratumour heterogeneity heterogeneity ↑ TILs. CD8⁺ T cells. \downarrow TILs, CD8⁺ T cells, Cancer cell-DCs DCs extrinsic ↑ Interferon ↓ Interferon features (TME) signalling signalling ↑ PD-L1 positivity \downarrow PD-L1 positivity ↑ Chemoattractants \downarrow Chemoattractants

Szekely, Ann Oncol 2019

Bianchini G Nat Rev Clin Oncol 2022

Curigliano, ESMO Living Guidelines 2023

Immunotherapy: First-Line Rx for mTNBC

	IMPASSION 131	IMPASSION 130	KEYNOTE 355
N (PD-L1+)	943 (292, 45%) <u>></u> 1%	902 (369, 41%) <u>></u> 1%	847 (332, 38%) CPS <u>></u> 10
Randomization and Treatment	2:1 Paclitaxel 90 mg/m2 Atezolizumab	1:1 nab-Paclitaxel 100 mg/m2 Atezolizumab	2:1 Pac/nab/gem+carbo Pembrolizumab
de novo	28-30%	~37% (no chemo)	30%
Prior taxane	51-53%	51%	45%
PFS in PD-L1+	5.7 → 6 mo; HR 0.82 P=0.2	5 → 7.5 mo; HR 0.62 P<0.0001	5.6→ 9.7 mo; HR 0.65 P=0.0012 FDA approved 7/21
OS benefit	No	YES	YES

Miles et al, Ann Oncol 2021; Schmid et al, NEJM 2018 & Emens et al, Ann Oncol 2021; Cortes et al, Lancet 2020; Rugo et al, ESMO 2021

Randomized Phase III studies with chemotherapy plus PD-1/PD-L1 inhibitors in 1st line TNBC

1. Schmid, NEJM 2018; 2. Miles, Ann Oncol 2021; 3. Cortes, Lancet 2020

IMpassion130: Final overall survival

ITT

	A	+ nP		P + nP		
Baseline characteristic	Patients,	OS, months	atient n	oS, months		HR (95% CI)
All	451	21.0	451	18.7	⊢♦ −1	0.88 (0.76-1.03)
PD-L1 status	105	05.4	404	17.0		0.00 (0.54.0.00)
Positive	185	25.4	184	17.9		0.69 (0.54-0.88)
Negative	266	19.7	267	19.7		1.05 (0.87-1.28)
Age, years	60	10.0	E 4	10.1		0.77 (0.50.1.15)
10-40	03	10.0	51	13.1		
41-04 \GE	204	21.1	115	20.0		0.00 (0.73-1.07)
≥05 Pace ⁸	104	22.0	115	19.0		0.92 (0.07-1.20)
White	209	21.0	201	17.6		0.82 (0.60.0.00)
Acian	95	27.0	76	20.2		1 16 (0 70 1 72)
Black/African Amorican	26	19.5	22	15.7		0.85 (0.46-1.50)
	20	10.5	32	15.7		0.65 (0.46-1.59)
ECOG F3-	056	25.0	270	20.7		0.94 (0.69 1.02)
1	102	25.0	170	12.7		0.04 (0.00 1.03)
Papalina diagona atatuat	193	10.3	179	13.2		0.69 (0.71-1.12)
baseline disease status-	46	20.6	40	20.0		1 01 (0 67 0 00)
Metastatia	40	29.0	42	30.0		
Number of motostatic sites	404	20.4	406	17.9		0.66 (0.73-1.01)
	222	04.1	241	01.1		0.95 (0.71 1.02)
. 2	110	24.1	100	21.1		0.03 (0.71 1.02)
Proin motostasoo	110	12.7	100	12.1		0.94 (0.71-1.25)
Voc	20	14.2	21	16.0		1 16 (0 66 2 04)
Ne	401	14.3	400	10.2		
Rona matastassa	421	21.0	420	19.4		0.87 (0.74-1.01)
Voo	145	17 1	1 / 1	14.0		0.96 (0.67 1.11)
No	206	17.1	210	14.9		0.00 (0.07-1.11)
Liver meteotoooo	300	22.0	310	20.5		0.66 (0.73-1.06)
Voo	106	14.0	110	10.1		0.92 (0.62 1.07)
No	225	22.7	222	22.0		0.82(0.021.07)
Lung motostosos	320	23.7	333	22.0		0.09 (0.74-1.07)
Voc	207	17.9	242	17 4		0.05 (0.77 1.17)
No	227	22.7	242	20.0		0.93 (0.66 1.04)
l ymph nodo-only dieoaeo8	224	20.7	209	20.0		0.03 (0.00-1.04)
Voc	33	34.4	23	34.7		0.77 (0.30-1.51)
No	/17	20.3	126	18.2		0.00 (0.77.1.06)
Prior (neo) adjuvant chemotherapy	417	20.5	420	10.2		0.30 (0.77-1.00)
Voc	1 201	21.4	206	20.0		0.04 (0.79 1.12)
No	167	20.8	165	16.0		0.79 (0.62 1.03)
Prior taxane treatment	107	20.0	105	10.0		0.73 (0.02-1.00)
Voe	231	20.5	230	20.1		0.94 (0.77-1.16)
No	220	21.1	221	17.9		0.81 (0.65 1.02)
Prior anthracycline treatment	220	21.1	221	17.5		0.01 (0.00-1.02)
Voe	243	20.2	242	19.7		0.98 (0.80-1.20)
No	208	22.0	200	18.0		0.70 (0.62 0.00)
	200	22.0	203	10.0		0.79 (0.02-0.99)
				0.25	1 2	5
				0.25	Hazard ratio	0
						→
					A + nP better P + nP better	

KEYNOTE-355:

Pembrolizumab + chemotherapy as first-line in mTNBC

Key Eligibility Criteria

- Age ≥18 years
- Central determination of TNBC and PD-L1 expression
- Previously untreated locally recurrent inoperable or metastatic TNBC
- Completion of treatment with curative intent ≥ 6 months prior to first disease recurrence
- ECOG performance status 0 or 1
- Life expectancy ≥12 weeks from randomization
- Adequate organ function
- No systemic steroids
- No active CNS metastases
- No active autoimmune disease

Stratification Factors:

- Chemotherapy on study (taxane vs gemcitabine/carboplatin)
- PD-L1 tumor expression (CPS \geq 1 vs CPS <1)
- Prior treatment with same class chemotherapy in the neoadjuvant or adjuvant setting (yes vs no)

Endpoints:

- Primary: PFS and OS in patients with PD-L1+ tumors (CPS \geq 10 and CPS \geq 1) and in the ITT population
- Secondary: ORR, DOR, DCR, Safety in all treated patients

^a Chemotherapy dosing regimens are as follows: Nab-paclitaxel 100 mg/m² IV on days 1, 8, and 15 every 28 days Paclitaxel 90 mg/m² IV on days 1, 8, and 15 every 28 days Gemcitabine 1000 mg/m²/carboplatin AUC 2 on days 1 and 8 every 21 days

KEYNOTE-355: Progression-free survival

PD-L1 CPS ≥10

PD-L1 CPS ≥1

ITT population

PFS superiority CPS ≥10 boundary α=0.00411

PFS superiority CPS \geq 1 boundary α =0.00111 not met

Significance not tested according to hierarchical statistical design

KEYNOTE-355: Overall survival

PD-L1 CPS ≥10

PD-L1 CPS ≥1

No significant difference in CPS ≥1 and ITT

- For pembrolizumab + chemotherapy in mTNBC, CPS ≥10 is the best cut-off to define those expected to benefit
- Pembrolizumab + chemotherapy is a new standard of care for the treatment of mTNBC with CPS>10

Rugo, ESMO 2021; Cortes, NEJM 2022

KEYNOTE-355: Overall survival in subgroups CPS ≥10

		Median	OS (mo)	Hazard Ratio
Subgroup	N	Pembro + Chemo	Placebo + Chemo	for Death (95%)
Overall -	323	23.0	16.1	0.73 (0.55 to 0.95)
Age (years)				
<65	257	21.8	16.8	0.78 (0.58 to 1.05)
≥65	66	28.3	12.6	0.51 (0.28 to 0.92)
Geographic region				
N America/EU/ANZ	212	23.5	15.2	0.72 (0.52 to 1.00)
Asia -	56	26.7	17.4	0.44 (0.23 to 0.84)
Rest of world	55	18.0	22.0	1.07 (0.57 to 1.98)
ECOG PS	100	00.4	40.0	0.70 (0.40 + 4.00)
0	196	26.4	19.8	0.70 (0.49 to 1.00)
	127	17.7	10.6	0.70 (0.47 to 1.05)
On-study chemotherapy			10.1	
Nab-paclitaxel	99	29.8	18.4	0.63 (0.39 to 1.03)
Paclitaxel	44	28.6	8.5	0.34 (0.16 to 0.72)
Gemcitabine-Carboplatin	180	19.1	16.2	0.88 (0.61 to 1.25)
Prior same-class chemotherapy				
Yes	65	23.5	14.9	0.60 (0.32 to 1.09)
No Brier (nec)adiment chemotherapy	258	22.8	16.9	0.74 (0.55 to 1.00)
	400	00.0	47.4	0.00 (0.01 to 1.00)
Yes	193	20.3	17.1	0.86 (0.61 to 1.22)
Disease free interval	130	28.3	13.0	0.53/0.34 to 0.800
de novo metastasis	104	26.4	12.5	0.64 (0.34 to 0.96)
<12 months	65	20.4	10.7	1.44 (0.73 to 2.82)
>12 months	152	24.0	17.1	0.65 (0.45 to 0.06)
	155	24.9	17.1	0.65 (0.45 (0 0.96)
	19/	20.1	18.8	0.63 (0.43 to 0.01)
	138	12.0	10.5	0.05 (0.43 to 0.31)
		10.2	10.0	0.75 (0.51 10 1.10)
0 1	2 3			
Hazard Ratio (95% CI))			
Envoro Env				
ravors rav				

Pembro + Chemo Placebo + Chemo

Impassion 132: Study design

Double-blind placebo-controlled randomised phase 3 trial

- Unresectable locally advanced/ metastatic TNBC
- Prior anthracycline and taxane for early TNBC
- Disease progression <12 months after last treatment with curative intent for early TNBC^a
- No prior CT for advanced TNBC
- Known PD-L1 status (SP142)

Carboplatin/gemcitabine or capecitabine^b + atezolizumab 1200 mg q3w

Treatment continued until disease progression or unacceptable toxicity

Carboplatin/gemcitabine or capecitabine^b + placebo q3w

Stratification factors:

- Visceral (lung and/or liver) metastases
- CT backbone

R

1:1

• PD-L1 status (during all-comer enrolment) I

Primary endpoint:

 OS (hierarchical testing: PD-L1+ TNBC^c then, if positive, modified ITT population^d)

Impassion 132: Overall Survival

No significant improvement in OS with atezolizumab (median F/U: 9.8 months)

Discordance across PD-L1 tests

ASSESSMENT

TPS = Tumor proportion score = (pos TC/all TC)*100 CPS = Combined pos Score = ((posTC + posIC)/allTC)*100 IC% = Immun cell (proportion) score (pos IC/all IC)*100 ICA = Immun cell (area) score (pos IC area/tumor area)*100

PD-L1 testing

27% of patients is PD-L1 «single-positive» Consider both tests if both ICIs are available

~~~~~

### PD-L1 status by anatomical location<sup>a</sup>



Rugo, JNCI 2021

Immunotherapy and VEGF inhibition

### Figure 1. LEAP-005 Study Design

#### **Study Population**

- Women aged ≥18 years
- Histologically/cytologically confirmed, advanced TNBC
- 1 or 2 prior lines of therapy
- Measurable disease per RECIST version 1.1

-----

• ECOG PS 0-1

· Tissue for PD-L1 assessment

Lenvatinib is a multiple kinase inhibitor against VEGFR1, VEGFR2, and VEGFR3



### Immunotherapy and VEGF inhibition

### LEAP-005 study



|                 | ITT        | *PDL1+     | PDL1-      |
|-----------------|------------|------------|------------|
| ORR [95% CI], % | 32 [17–51] | 50 [16–84] | 27 [11–50] |



\*CPS: PD-L1 IHC 22C3 pharmDx >/=10

### Immunotherapy and VEGF inhibition: **bispecific antibodies**



phase III trials.

Anti-PD-L1 (VHH)

Wu, SABCS 2023

## PARP inhibitors in metastatic triple-negative breast cancer

PARP inhibitors and immune-checkpoint inhibitors: KEYLYNK-009 study design



Genomic tumor status (BRCAm vs BRCAwt)

## **PARP** inhibitors in metastatic triple-negative breast cancer

### KEYLYNK-009: estimates of OS according to PD-L1 CPS and tBRCAm



#### Tumor PD-L1 CPS ≥10 Population

00000000

Rugo, SABCS 2023

# ADCs in metastatic triple-negative breast cancer

### Combining ADCs and immune-checkpoint inhibitors

 ADCs and ICIs demonstrated to improve the OS in patients with mTNBC

• The combination of ADCs and ICIs may have synergistic properties

 ADCs could transform a cold tumor microenvironment into a hot one



## **ADCs in metastatic triple-negative breast cancer**

### Combining ADCs and immune-checkpoint inhibitors

BEGONIA Trial Dato-DXd + Durvalumab in 1<sup>st</sup> line mTNBC



Antitumour responses were observed **regardless of PD-L1 expression** level as assessed by 2 separate PD-L1 assays and scoring methods

#### Morpheus-PAN BC Trial Sacituzumab Govitecan + Atezolizumab in PD-L1+ 1<sup>st</sup> line mTNBC



Schmid et al, ESMO Breast 2024

Schmid et al, ESMO 2023

# Combining ADCs and ICI in metastatic breast cancer



col amendment activated in 1/2022 to allow participants with any PD-L1 status to enroll \* Central PD-L1 testing performed with PharmDx 22C3 assay. PD-L1-positive. combined positive score (CPS) ≥1. Note: There is no approved CDx with 22C3 for HR+/HER2- mBC ne recentor: FR, estrogen recentor: PR, progesterone recentor: IHC, immu try ISH in situ hybridization: mBC me

2 (6)

0 (8)

SG

(N=28)

#### **Progression-Free Survival by PD-L1 IHC status**



**SACI-IO TNBC:** sacituzumab govitecan and pembrolizumab in 1° line PD-L1- mTNBC (ER<5%)

#### **Overall Survival by PD-L1 IHC status**





## **SYNERGY TRIAL**

### First-line treatment in advanced TNBC

3 15

15 300

Other/NR

Recurrent

No



right and responsibility of the author. Permission is required for re-use.

### What biomarkers may predict immunotherapy benefit?

#### (i) Tumor cells

- PD-L1 expression;
- TMB;
- DDR pathways: dMMR/MSI;
- Specific mutated gene pathways: IFN-γ pathway, KRAS, STK11;
- Neoantigen load;

#### (ii) Tumor microenvironment

- PD-L1 expression;
- Tumor-infiltrating immune cells: *Immune status of TME:* immunologic classification, immunoscore;

*Immune cells with specific phenotypes:* CD39<sup>+</sup>CD8<sup>+</sup>T, CD4<sup>+</sup>T cells, FOXP3<sup>+</sup>T cells, TAMs, myeloid cells, NKp46<sup>+</sup> cells; *Diversity of immune repertoires:* TIL richness and clonality, TCR clonality;

#### (iii) Circulating factors

- Peripheral blood cells: myelogenous cells, eosinophils, nacrophages, CD4<sup>+</sup>ICOS<sup>+</sup>T cells, CTCs;
- ctDNA;
- Other circulating molecular: exosomal PD-L1, soluble proteins, cytokines and inflammatory factors;

#### (iv) Host-related markers

- General characteristics: gender, age, body fat distribution;
- Intestinal commensal microbiota;
- Host germline genetics: HLA diversity and other specific mutations;

(v) Immune-related adverse events

- Endocrine irAEs: thyroid dysfunction;
- Skin irAEs: vitiligo, pruritus, lichenoid toxicity;

### Spatial predictors of immunotherapy response in TNBC



# **CD8+TCF1+T cells** and **MHCII+ cancer cells** are dominant predictors of response to ICI



#### **CD8 T CELL INFILTRATION**



### **ISPY2:** Use of the ImPrint immune signature to predict IO response?

HR+/HER2- (n=379) 8 arms, including one IO arm HR+/HER2- (n=200) 5 IO arms





• 16% pCR in ImPrint-

Huppert et. al. ASCO 2022

Wolfe, Yau et. al. ASCO 2023

### **Immunotherapy in metastatic breast cancer** ... and future perspectives



Personalised bispecific antibodies

PROTAC e.g TP53mu

## Immunotherapy in metastatic breast cancer

### ... and future perspectives





Corti, EJC 2022; Antonarelli, Ann Onc 2021



Giuseppe Curigliano, MD PhD

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

### Promising Antitumor Efficacy of VG201-C101 Study modified oncolytic HSV viral gBprotein







(N=17,Data cut-off: 2024-08-8)

# Key points immunotherapy in mTNBC

- PD-L1 status: what, when, how?
- Future development:
  - Biomarkers beyond PD-L1: TILs, basal-like immune activated, immune phenotype, CD8+, CD274 gain/amplification
  - How to integrate redundant/overlapping biomarkers
  - Timing of chemotherapy, combinations with PARP inhibitors and novel ADCs
  - Early relapsers need more effective options
  - Can we rechallenge immunotherapy in the first-line metastatic setting after (neo)adjuvant chemo-immunotherapy?
  - Should patients with ER-low/HER2-negative disease be offered Immunotherapy?
  - What is the optimal duration of chemotherapy in combination with immunotherapy in metastatic breast cancer?
  - Should immunotherapy be continued until progression in metastatic breast cancer that is responding to therapy?

# Thank you!





paola.zagami@ieo.it @paolazagam