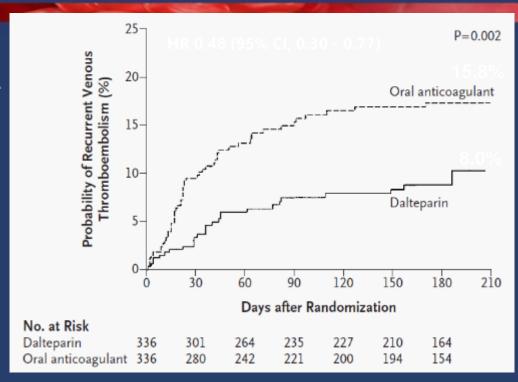

LE RAGIONI DEL RISCHIO TROMBOTICO NEI PAZIENTI CON CANCRO: PRINCIPI DI TERAPIA

Prof Mario Mandalà University of Perugia

VTE TREATMENT

Figure 3. Treatment of CAT.

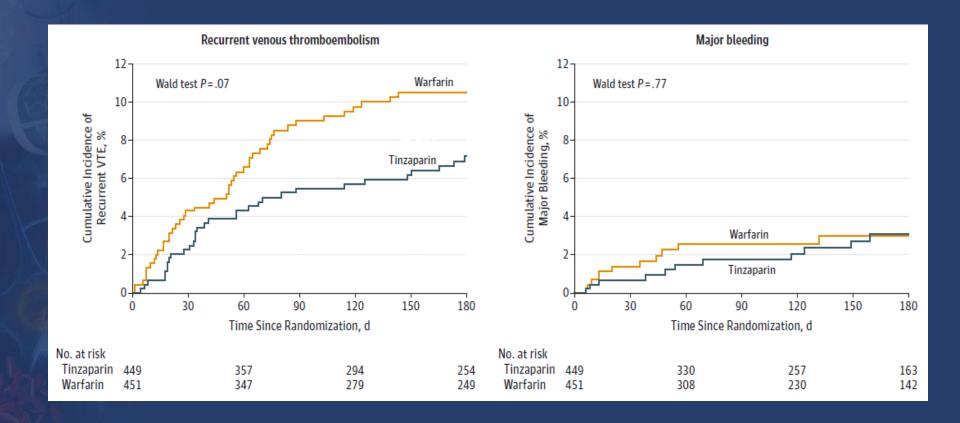


The CLOT study

Randomized open trial of 672 patients with cancer-related venous thrombosis.

Comparison between dalteparin and warfarin.

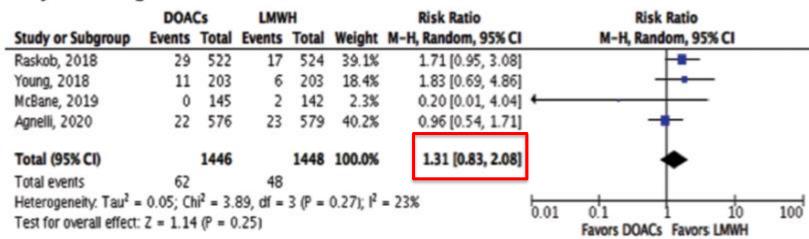
Dalteparin 200 IU/kg for 1 month then 150 IU/kg vs. dalteparin for 5-7 days then warfarin (INR 2-3) for six months.


Lee AY, et al.; Randomized Comparison of Low-Molecular-Weight Heparin versus Oral Anticoagulant Therapy for the Prevention of Recurrent Venous Thromboembolism in Patients with Cancer (CLOT) Investigators. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med. 2003.

	Warfarin	Dalteparina	P-value
Sanguinamento maggiore	4.0%	6.0%	P=0.27

The CATCH study

Open randomized trial including 1053 patients with cancer-associated VTE.


Tinzaparin (175 IU/kg) vs tinzaparin 5-10 days then warfarin (INR 2-3) for 6 months.

DOACs vs LMWH for the treatment of cancerassociated VTE

Recurrent VTE **DOACS** LMWH Risk Ratio Risk Ratio M-H, Random, 95% CI Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI Raskob, 2018 522 46 524 34 40.3% 0.74 [0.48, 1.14] 203 17.1% 0.44 [0.20, 1.00] Young, 2018 18 203 145 McBane, 2019 142 3.2% 0.11 [0.01, 0.85] Agnelli, 2020 576 579 39.4% 0.70 [0.45, 1.08] Total (95% CI) 1446 1448 100.0% 0.62 [0.43, 0.91] Total events 119 Heterogeneity: $Tau^2 = 0.04$; $Chi^2 = 4.30$, color df = 3 (P = 0.23); $l^2 = 30\%$ 0.01 0'1 100 Test for overall effect: Z = 2.46 (P = 0.01) Favors DOACs Favors LMWH

Major bleeding

Gastrointestinal and genitourinary bleeding

a) Gastro-intestinal bleeding

	Experimental Control		rol	Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Raskob, 2018	20	522	6	524	36.1%	3.35 [1.35, 8.26]	
Young, 2018	8	203	4	203	25.0%	2.00 [0.61, 6.54]	 •
McBane, 2019	0	145	0	142		Not estimable	
Agnelli, 2020	11	576	10	579	38.9%	1.11 [0.47, 2.58]	-
Total (95% CI)		1446		1448	100.0%	1.91 [0.96, 3.82]	•
Total events	39		20				
Heterogeneity. Tau ² =	0.13; Chi	$i^2 = 3.0$	9, df = 2	(P = 0)	$(.21); I^2 =$	35%	0.01 0.1 1 10 100
Test for overall effect:	Z = 1.84	(P = 0.1)	07)				Favour DOACs Favour LMWH

b) Genito-urinary bleeding

	_								
	Experimental Contr		ental Control Risk Ratio				Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI		
Raskob, 2018	5	522	0	524	28.0%	11.04 [0.61, 199.19]	-		
Young, 2018	1	203	0	203	23.0%	3.00 [0.12, 73.21]	-		
McBane, 2019	0	145	0	142		Not estimable			
Agnelli, 2020	4	576	1	579	49.0%	4.02 [0.45, 35.86]			
Total (95% CI)		1446		1448	100.0%	4.99 [1.08, 23.08]			
Total events	10		1						
Heterogeneity: Tau ² =	: 0.00; Chi	$i^2 = 0.4$	4, df = 2	P = 0).80); l² =	0%	0.01 0.1 1 10 100		
Test for overall effect:	Z = 2.06	(P = 0.7	04)				Favour DOACs Favour LMWH		

Data from RTCs comparing DOACS and LMWH in CAT

DOACs significantly decreased the risk of CAT recurrence (RR, 0.67; 95%CI, 0.52– 0.85), with a non-significant increase in the risk of major bleeding (RR, 1.17; 95%CI, 0.82–1.67).

Recurrent VTE

	DOAC		LMW	н		Risk Ratio		Risk	Ratio	
Study or Subgroup	Events 1	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rand	om, 95% CI	
HOKUSAI-VTE CANCER	34	522	46	524	33.5%	0.74 [0.48, 1.14]				
SELECT-D	8	203	18	203	9.3%	0.44 [0.20, 1.00]			8	
ADAM-VTE	1	145	9	142	1.4%	0.11 [0.01, 0.85]	_			
CARAVAGGIO	32	576	46	579	32.0%	0.70 [0.45, 1.08]		-		
CASTA-DIVA	4	74	6	84	4.1%	0.76 [0.22, 2.58]			_	
CANVAS	20	330	27	308	19.6%	0.69 [0.40, 1.21]			-	
Total (95% CI)	1	1850		1840	100.0%	0.67 [0.52, 0.85]		•		
Total events	99		152							
Heterogeneity: Tau2 = 0.00; Chi	$r^2 = 4.36$, df =	5 (P =	0.50); 12	= 0%			0.01	0.1	40	100
Test for overall effect: Z = 3.22	(P = 0.001)		500				0.01		I 10 Favours LMWH	100

Major Bleeding

	DOA	С	LMW	Н		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
HOKUSAI-VTE CANCER	29	522	17	524	29.2%	1.71 [0.95, 3.08]	-	
SELECT-D	11	203	6	203	12.2%	1.83 [0.69, 4.86]		
ADAM-VTE	0	145	2	142	1.4%	0.20 [0.01, 4.04]		
CARAVAGGIO	22	576	23	579	30.3%	0.96 [0.54, 1.71]	-	
CASTA-DIVA	1	74	3	84	2.5%	0.38 [0.04, 3.56]		
CANVAS	17	330	17	308	24.5%	0.93 [0.49, 1.80]		
Total (95% CI)		1850		1840	100.0%	1.17 [0.82, 1.67]	*	
Total events	80		68					
Heterogeneity: Tau2 = 0.02; CI	$ni^2 = 5.66$, df	= 5 (P	= 0.34); 12	= 12%	•		1001	
Test for overall effect: Z = 0.85	5 (P = 0.39)						0.01 0.1 1 10 Favours DOAC Favours LMWH	100

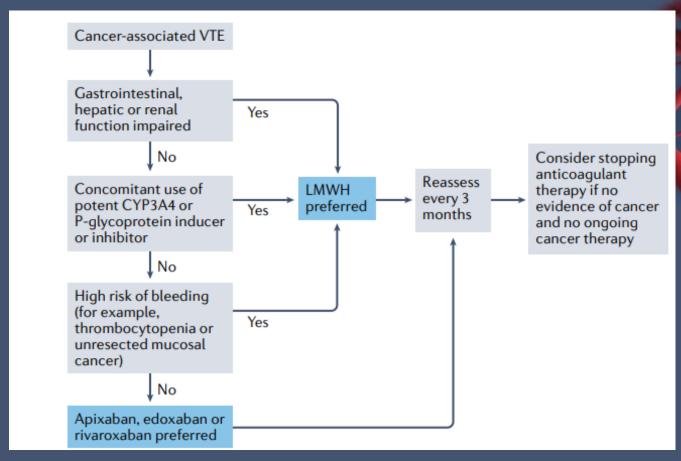
RCT, randomized controlled trial.

Frere C, et al. J Hematol Oncol. 2022;15:69.

Data from RTCs comparing DOACS and LMWH in CAT

DOACS significantly increase the risk of clinically relevant nonmajor bleeding (RR 1.66; 95%CI, 1.31–2.09) and no difference in all-cause mortality rates.

C. Clinically relevant non major bleeding


	DOA	С	LMW	Н		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
HOKUSAI-VTE CANCER	64	522	43	524	40.6%	1.49 [1.04, 2.16]	-
SELECT-D	25	203	7	203	8.2%	3.57 [1.58, 8.07]	
ADAM-VTE	9	145	7	142	5.9%	1.26 [0.48, 3.29]	
CARAVAGGIO	52	576	35	579	32.1%	1.49 [0.99, 2.26]	-
CASTA-DIVA	8	74	5	84	4.8%	1.82 [0.62, 5.31]	
CANVAS	19	330	8	308	8.3%	2.22 [0.98, 4.99]	•
Total (95% CI)		1850		1840	100.0%	1.66 [1.31, 2.09]	◆
Total events	177		105				
Heterogeneity: Tau ² = 0.00; Chi ² =	= 4.82, df =	= 5 (P :	= 0.44); I ²	= 0%			0.01 0.1 1 10 100
Test for overall effect: Z = 4.23 (P	< 0.0001))					Favours DOAC Favours LMWH

D. Overall Mortality

	DOA	С	LMW	Н		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
HOKUSAI-VTE CANCER	140	522	127	524	29.9%	1.11 [0.90, 1.36]	•
SELECT-D	48	203	56	203	13.6%	0.86 [0.61, 1.20]	-
ADAM-VTE	23	145	15	142	4.4%	1.50 [0.82, 2.76]	+-
CARAVAGGIO	135	576	153	579	31.4%	0.89 [0.73, 1.08]	=
CASTA-DIVA	19	74	20	84	5.5%	1.08 [0.63, 1.86]	_
CANVAS	71	330	57	308	15.3%	1.16 [0.85, 1.59]	 -
							1
Total (95% CI)		1850		1840	100.0%	1.02 [0.89, 1.16]	•
Total events	436		428				
Heterogeneity: Tau2 = 0.00; Chi2 :	= 5.76, df	= 5 (P :	= 0.33); l ²	= 13%			0.01 0.1 1 10 100
Test for overall effect: Z = 0.25 (P	r = 0.80						Favours DOACs Favours LMWH

Frere et al., Journal of Hematology & Oncology 2022

Clinical algorithm for CAT management

Recommendations

ISTH 2018	LMWH. Edoxaban and rivaroxaban if low-risk of bleeding and no drug-drug interaction
ASCO 2019	 Initial: LMWH, UFH, fondaparinux, or rivaroxaban Long-term: LMWH, edoxaban, or rivaroxaban for at least 6 months preferred over VKAs
ESC 2019	LMWH. Edoxaban and rivaroxaban alternative to LMWH if no gastrointestinal cancer
ITAC* 2019	 Initial: LMWH (preferred), UFH, fondaparinux Early maintainance: LMWHs. DOACs (rivaroxaban, edoxaban) if no strong drug—drug interactions or GI absorption impairment LMWH or DOACs for a minimum of 6 months
NCCN 2021	LMWH (dalteparin high level, enoxaparin, fondaparinux and UFH lower level). DOACs preferred (apixaban and edoxaban high level, rivaroxaban and dabigatran lower level) if no gastric or gastroesophageal lesions
ASH 2021	 Initial: apixaban, rivaroxaban, LMWH Short-term: apixaban, rivaroxaban, edoxaban over LMWH or VKAs Long-term: DOAC or LMWH
ACCP 2021	 Oral Xa inhibitor (apixaban, edoxaban, rivaroxaban) over LMWH for the initiation and treatment phases of therapy Apixaban or LMWH may be the preferred option in patients with luminal GI malignancies
ESMO 2023	 LMWH, UFH, fondaparinux, apixaban or rivaroxaban recommended for the acute phase [I, A] Anticoagulation for at least 6 mo: LMWH, apixaban, edoxaban or rivaroxaban which are preferred over VKAs [I, A] In luminal GI cancer, LMWH is preferred for treating CAT [II, B]. Similar considerations potentially apply to urothelial K [II, B]. High risk for GI bleeding (e.g., active ulcers or strong inhibitors/inducers of PgP and CYP3A, LMWH is preferred [IV, B]

Khorana A, et al. J Thromb Haemost 2018; Key NS, et al. J Clin Oncol 2019; Konstantinides SV, et al. Eur Heart J 2019; Farge D, et al. Lancet Oncol 2019; O'Connell C, et al. 2021;Oncologist 2021; Lyman G, et al. Blood Adv 2021; Stevens SM, et al. Chest 2021; Falanga A, et al. Ann Oncol 2023

DRUG-DRUG INTERACTION

European Journal of Cancer 148 (2021) 371-381

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.ejcancer.com

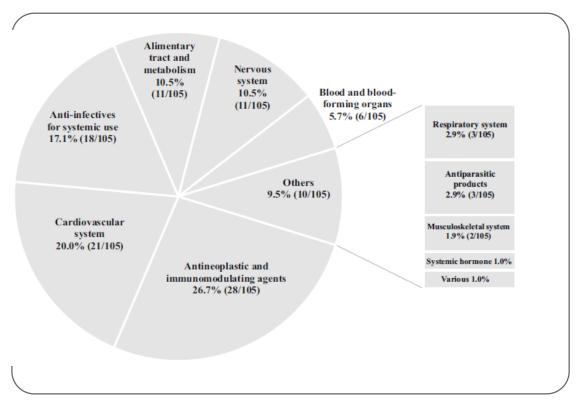
Original Research

Effects of concomitant administration of anticancer agents and apixaban or dalteparin on recurrence and bleeding in patients with cancer-associated venous thromboembolism

Melina Verso ^{a,*}, Andres Munoz ^b, Rupert Bauersachs ^c, Menno V. Huisman ^d, Mario Mandalà ^e, Giorgio Vescovo ^f, Cecilia Becattini ^a, Giancarlo Agnelli ^a

Drug-Drug Interactions (DDIs)

Cancer therapy specific inhibitors and inducers of CYP3A4 and P-glycoprotein

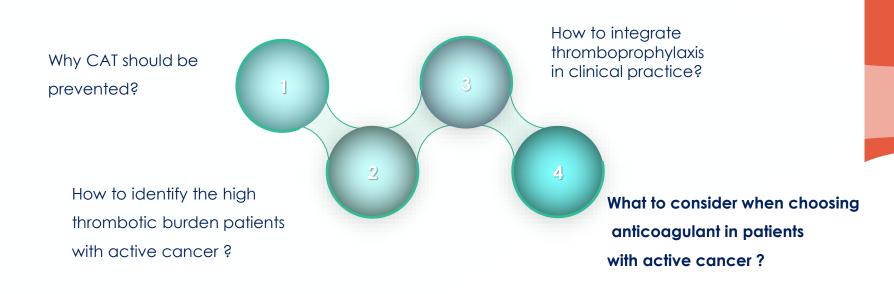

Cancer-related therapies	Cytochrome p450 CYP3A4	P-glycoprotein
Anthracyclines		
Doxorubicin Idarubicin	↓	1
Idalubiciii	+	
Antimycotic agents		
Vinblastine	↓	1
Vincristine	↓	
Vinorelbine	↓	
Paclitaxel	1	
Topoisomerase inhibitors		
Topotecan	1	
Etoposide	*	
Ltoposide	+	1
Alkylating agents		
Cyclophosphamide	↓	
Ifosfamide	↓	
Lomustine	1	

Tyrosine kinase inhibitors		
Afatinib		1
Alectinib		1
Ceritinib	↓	
Crizotinib	↓	1
Dasatinib	↓	
Ibrutinib		1
Idelalisib	↓	1
Imatinib	↓	1
Lapatinib	↓	1
Nilotinib	↓	1
Osimertinib	1	
Vemurafenib	1	1
Lenvatinib	1	1
Sunitinib	•	1
Vandetanib		1
Immune-modulating		
agents		
Cyclosporine	↓	1
Sirolimus	1	
Temsirolimus	1	
Tacrolimus	1	1
Methylprednisolone	1	
Dexamethasone	1	1

Cancer-related therapies	Cytochrome p450 CYP3A4	P-glycoprotein
Supportive care		
Aprepitant	↑↓	
Fosaprepitant	↑↓	
Fentanyl	↓	
Methadone	↓	
Acetaminophen	1	
Other		
Bortezomib	↓	
Bexarotene	<u>†</u>	
Venetoclax		1
Hormonal agents		
Tamoxifen	↓ ↓	1
Anastrozole	↓	
Bicalutamide	↓	
Enzalutamide	↑	1
Abiraterone	i	į
Mitotane	1	

Blood. 2019;133(4):291-298

A growing concern in cancer: DDIs


Studies on anticancer drugs (26.7%) contributed the most to published PBPK models, followed by cardiovascular (20.0%) and anti-infective (17.1%) drugs

Min JS. Arch Pharm Res 2017

PBPK: Physiologically Based PharmacoKinetic

PBPK definition: PBPK modeling is a mathematical modeling technique that uses a series of mass balance differential equations to predict the ADME characteristics of drugs in humans

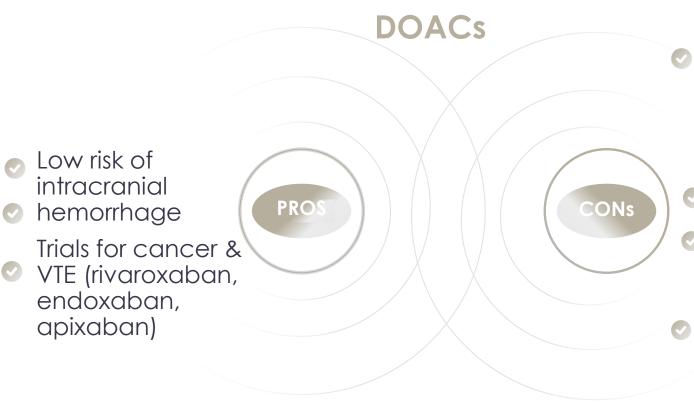
Concerns for thromboprophylaxis in patients with active cancer

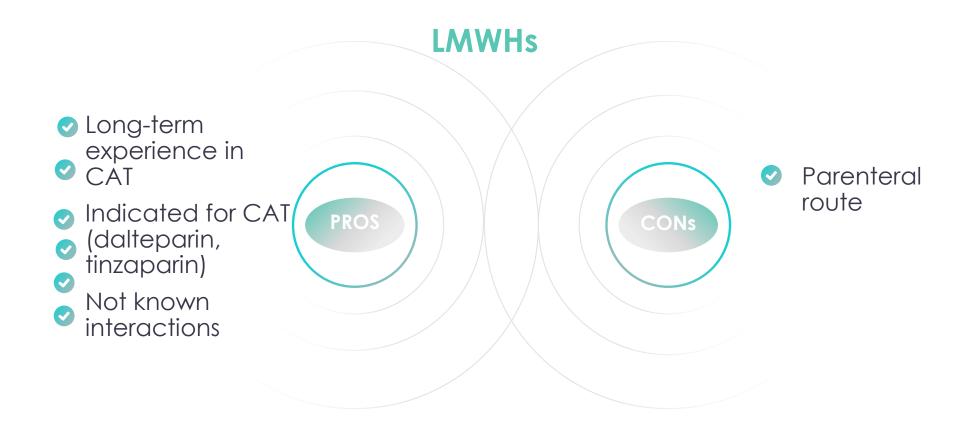
Anticoagulation Agents for patients with active cancer

Farmakis D. European Journal of Preventive Cardiology doi:10.1093/eurjpc/zwaa087

VKAs Drug-drug interactions Narrow therapeutic window indicated for **PROS** CONs valvular Atrial Low TRR due to Fibrillation malnutrition vomiting & hepatic disfunction Difficult Farmakis D. European Journal of Preventive Cardiology doi:10.1093/eurjpc/zwaa087 handling perioperatively

Drug-drug interactions


Poor monitoring of anticoagulant activity by standard assays


Increased risk of GI bleeding

Increased risk of GU bleeding

Unpredictable absorption due to vomiting

Not Reversal agent (dabigatran)

Author, initial + surname 10pt

LONG TERM DURATION OF THROMBOPROPHYLAXIS OPEN QUESTIONS

NO EVIDENCE BEYOND 6 MONTHS

COMPLIANCE IS A CONCERN

HIGH RISK PATIENTS WITH BRAIN MET

HOW TO MANAGE PATIENTS WITH THROMBOCYTOPENIA

BURDEN OF THE DISEASE

INCIDENCE (USA)

• 25000 Primary brain cancers

MAIN METASTATIC CANCERS

• NSCLC

• Breast

• 200.000 brain metastases

• Melanoma

EPIDEMIOLOGY OF VTE IN "BRAIN CANCER"

VTE: High incidence

VTE: Low Incidence

• Breast 2-3%


Glioblastoma 40%

• Renal 2-3%

• NSCLC 10%

• Melanoma 2-3%

Main clinical features of the studies included

- 30 studies (3,893 patients) were included.

15 studies (2,353 pts) included patients with primary brain cancer only

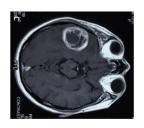
6 studies (1,009 pts) included patients with brain metastases only

9 studies included both patients with primary brain cancer and patients with brain metastases

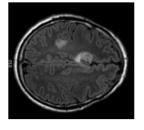
- All studies included were retrospective.
- The main indication for anticoagulant treatment was acute VTE (25 studies, 3,313 patients), followed by atrial fibrillation (2 studies, 268 patients), cerebral vein thrombosis (2 studies, 187 patients) or any indication for anticoagulant treatment (1 study, 125 patients).

Outcomes	N° of studies	N° of ICH/ N° of patients	Rate	95% CI	l squared
Overall ICH	30	445/3,893	7.7%	5.1-11.5	92.8%
Major ICH	7	117/1,287	6.2%	2.8-13.0	91.5%
Fatal ICH	11	13/764	2.9%	1.7-4.7	0%
ICH in PBC patients	18	156/2,353	6.4%	4.1-9.9	84.4%
ICH in MBC patients	9	218/1,009	13.0%	6.5-24.2	93.7%
Major ICH* in PBC patients	4	30/793	3.9%	1.3-11.6	87.6%
Major ICH in MBC patients	3	87/494	15.4%	9.4-24.2	74.6%
ICH in pts with VTE	25	384/3,313	7.1%	4.4-11.5	93.7%

^{*} Major ICH: Any hemorrhage that was≥10 ml in volume, required surgical intervention, or was associated with clinical symptoms, such as nausea and vomiting, or focal neurologic deficit.


Results

	N° of studies	N° of ICH/ N° of patients treated	Anticoagulant therapy %	N° of ICH/ N° of patients not treated	No anticoagulant therapy %	RR	95% CI	P-value	l ²
Overall patients	17	152/1,072	11.5% (95% CI 7.4-17.6)	177/1,824	6.0% (95% CI 3.0-11.5)	1.81	1.15-2.84	0.001	60.3%
Patients with PBC	11	80/659	12.5% (95% CI 8.0-18.8)	50/1,346	4.4% (95% CI 2.5-7.7)	2.58	1.59-4.19	<0.001	45.5%
Patients with MBC	4	61/265	14.7% (95% CI 4.4-39.2)	81/301	15.4% (95% CI 5.3-37.2)	0.86	0.45-1.65	0.287	0%
Patients treated with DOACs vs LMWH	5	12/172	8.3% (95% CI 4.4-15.3)	71/278	11.7% (95% CI 2.9-37.0)	0.44	0.25-0.79	0.007	0%
Patients treated with LMWH vs warfarin	4	15/211	5.9% (95% CI 1.5-20.5)	8/198	5.4% (95% CI 1.5-17.3)	1.45	0.56-3.79	0.185	0%
Overall major ICH	4	33/239	10.4% (95% CI 4.0-24.5)	47/734	3.4% (95% CI 0.6-17.6)	1.93	0.79-4.73	0.001	38.7%
Major ICH in patients with PBC	3	9/135	6.3% (95% CI 1.7-20.3)	9/545	1.8% (95% CI 0.9-3.4)	3.75	1.6-4.5	0.003	0%


SUMMARY

Incidence of ICH in patients with primary vs metastatic brain cancer treated or not with anticoagulant therapy

ICH primary vs metastases: 6.4% vs 13.0%, RR 3.26 (2.69-3.94)

Primary brain cancer

Metastatic brain cancer

Treated with anticoagulants

12.5%
(95% CI 8.0-18.8)

4.4%
(95% CI 2.5-7.7)

RR 2.63 (95% CI 1.48-4.67)

14.7%
(95% CI 4.4-39.2)

RR 0.92 (95% CI 0.43-1.93)

DOACs vs Heparin

RR 0.19
(95% CI 0.04-0.99)

RR 0.65
(95% CI 0.36-1.16)

Giustozzi M, et al 2022

CONCLUSIONS

VTE TREATMENT: LMWH AND DOAC

DDI TO BE ADDRESSES

ROOM FOR IMPROVEMENT