SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Modena Policlinico

VII SESSIONE Controversie cliniche

# Radioterapia dopo terapia neoadiuvante



### **Bruno Meduri**

Azienda Ospedaliero-Universitaria di Modena (IT)



# **Adjuvant RT without NACT**

### **Post Mastectomy RT reduced** in pN+ the

10-year risk of a recurrence of any type by 10,6%20-year risk of death from breast cancer by 8,1%





**RNI** after conservative surgery:

reduction distant metastasis (in all patients) and mortality (especially in pN4+ patients)







chemotherapy and adjuvant RT

Integration of RT with systemic

treatments



# NACT and pathological response

*Rischio di LRR* in funzione del solo stadio patologico è differente per pazienti trattate con CT NAD rispetto alle pazienti sottoposte a CHT adiuvante

*Rischio di LRR:* correlato anche allo stadio clinico pre-CHT NAD



Early Breast Cancer Trialists' Collaborative G., Lancet Oncol 2018; 19: 27-39 - Buchholz T. A., IJROBP 53:880-888, 2002



# NACT and pathological response

Stadio clinico III (N2; T3N1; T4)

106 pts (74 stage III) with *pathologic complete response* after NAD CHT and mastectomy



«...the risk of LRR appears to be high...»

"...PMRT treating the chest wall and *undissected draining nodal basins* to pts with clinical Stage III and pCR at the time of mastectomy..."



McGuire S.E., IJROBP 68:1004-1009, 2007



# **RNI** after NACT

### Clinical stage II (T1/T2 N1; T2/T3 N0)



3008 pts, 356 LR (nodal LR: 3.6% in mastectomy e 2.2% in lumpectomy)

Combined clinical stage at random

| assignment |    |    |
|------------|----|----|
| cT1-2N0    | 65 | 51 |
| cT1-2N1    | 22 | 20 |
| cT3N0      | 8  | 19 |
| cT3N1      | 5  | 10 |

Significant *independent predictors of LRR* in multivariate analysis:

- age at random assignment (< 50 years)
- clinical tumor size before NAD CHT (>5 cm)
- clinical nodal status before NAD CHT (cN+)
- pathologic nodal status/pathologic breast tumor response (ypN negative/no breast pCR and ypN +)



# **RNI** after NACT

Clinical stage II (T1/T2 N1; T2/T3 N0)



... pathologic *response in the breast* and *pathologic axillary nodal status* have a major impact on the rates and patterns of LRR ...

Mamounas E.P., JCO 30:3960-3966, 2012

#### 🗶 @brunomeduri

# **RT** after **NACT**

### cStage II-III with pCR

#### **CLINICAL INVESTIGATION**

Breast

#### POSTMASTECTOMY RADIATION IMPROVES THE OUTCOME OF PATIENTS WITH LOCALLY ADVANCED BREAST CANCER WHO ACHIEVE A PATHOLOGIC COMPLETE RESPONSE TO NEOADJUVANT CHEMOTHERAPY

Sean E. McGuire, M.D., Ph.D.,\* Ana M. Gonzalez-Angulo, M.D.,<sup>†</sup> Eugene H. Huang, M.D.,\*

106 patients with clinical stage II-III; median follow-up was 62 months

**<u>PMRT</u>**: chest wall, supraclavicular fossa/axillary apex and internal mammary chain

|                | Nonirrad $(n = 1)$ | liated<br>34) | Irradiated $(n = 72)$ |      |  |  |  |
|----------------|--------------------|---------------|-----------------------|------|--|--|--|
| Characteristic | No. of patients    | %             | No. of patients       | %    |  |  |  |
| Clinical stage |                    |               |                       |      |  |  |  |
| IB             | 2                  | (6)           | 0                     | (0)  |  |  |  |
| IIA            | 13                 | (38)          | 1                     | (1)  |  |  |  |
| IIB            | 7                  | (21)          | 9                     | (17) |  |  |  |
| IIIA           | 5                  | (15)          | 29                    | (37) |  |  |  |
| IIIB           | 6                  | (17)          | 21                    | (29) |  |  |  |
| IIIC           | 1                  | (3)           | (3) 12 (1             |      |  |  |  |
|                |                    |               |                       |      |  |  |  |

Stage II: 32 pts

**10-year LRR rates : 0%** for both the patients treated with RT and those not receiving RT



# **RT** after **NACT**

Long-Term Impact of Regional Nodal Irradiation in Patients With Node-Positive Breast Cancer Treated With Neoadjuvant Systemic Therapy

#### **RNI significantly reduced** the risk:

LRR (HR: 0.497; P=0.02) and DR (HR: 0.731; P=0.04) *strong reduction* in HER2+ (HR: 0.237; P=0.0003)

### Factors associated with 10-year risk of LRR

**Younger age** (12.0% age 40 y vs 7.3% >40 y; P=.01) **Lack of axillary pCR** (9.7% for no pCR vs 4.8% for pCR; P=.006) **High nuclear grade** (10.3% grade III vs 4.5% grade I-II; P=.001)

*Lymph nodes removed* (17.6% for <10 vs 7.6% for 10; P=.001)

*High clinical N category* (9.3% for N3 vs 13.7% for N2 vs 7.4% for N1; P=.051)

Median FUP: 10.2 y 162 (12.6%) LRR of the 1289 pts



*High ypT category* (15.0% for ypT4, 10.9% for ypT3, 10.1% for ypT2, 7.9% for ypT1, 5.3% for ypT0; P=.06)

Lobular or unfavorable histologic subtype (22.0% for other unfavorable, 15.8% for lobular, 8.5% for ductal; P=.04)

**TN subtype or HER2+** (13.3% for TN vs 10.9% for HR-/HER2+ vs 7.6% for HR+/HER2+ vs 5.7% for HR+/HER2-; P=.003)

# **RT** after **NACT**

Nomogram to Predict 10-Year Risk of LRR in Patients with Clinical Stage II or III Breast Cancer with *Cytologically-Confirmed Axillary Lymph Node* Metastases Treated with Neoadjuvant Systemic Therapy and Surgery



Stecklein S. R., et al., Int J Radiat Oncol Biol Phys 2018; 102: 568-77

**X**@brunomeduri



# NACT and pathological response

De-escalation of radiotherapy after primary chemotherapy in cT1–2N1 breast cancer (RAPCHEM; BOOG 2010–03): 5-year follow-up results of a Dutch, prospective, registry study

Hypothesis: 5-year locoregional recurrence rate less than 4% if the study guideline was followed

|                                                                                                                                                                                                                                                     | Radiotherapy after breast<br>conserving therapy                                              | Radiotherapy after<br>mastectomy                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Low-risk group                                                                                                                                                                                                                                      |                                                                                              |                                                                                               |
| ypN0 (ALND)                                                                                                                                                                                                                                         | Whole breast radiotherapy                                                                    |                                                                                               |
| If SLNB before primary chemotherapy and no<br>ALND: cN1mi (SLNB), no risk factor*;<br>or if SLNB after primary chemotherapy and no<br>ALND: ypN0 (SLNB)                                                                                             | Whole breast radiotherapy                                                                    |                                                                                               |
| Intermediate-risk group                                                                                                                                                                                                                             |                                                                                              |                                                                                               |
| ypN1 (ALND)                                                                                                                                                                                                                                         | Whole breast radiotherapy                                                                    | Chest wall radiotherapy                                                                       |
| If SLNB before primary chemotherapy and no<br>ALND†: cN1mi (SLNB), ≥1 risk factor*, or cN1<br>(SLNB), ≤2 macrometastases, no risk factor*;<br>or if SLNB after primary chemotherapy and no<br>ALND†: ypN1mi (SLNB), no risk factor*                 | Whole breast radiotherapy;<br>in addition axilla level I and II†                             | Chest wall radiotherapy;<br>in addition axilla level I<br>and II†                             |
| High-risk group                                                                                                                                                                                                                                     |                                                                                              |                                                                                               |
| ypN2-3 (ALND)                                                                                                                                                                                                                                       | Whole breast radiotherapy;<br>axilla level III and IV                                        | Chest wall radiotherapy;<br>axilla level III and IV                                           |
| If SLNB before primary chemotherapy and no<br>ALND†: cN1 (SLNB), with ≤2 macrometastases<br>and ≥1 risk factor*, or ≥3 macrometastases;<br>or if SLNB after primary chemotherapy and no<br>ALND†: ypN1mi (SLNB), ≥1 risk factor*, or ypN1<br>(SLNB) | Whole breast radiotherapy;<br>axilla level III and IV;<br>in addition axilla level I and II† | Chest wall radiotherapy;<br>axilla level III and IV;<br>in addition axilla level I<br>and II† |



cT1–2N1 patients treated with NACT, it seems oncologically safe to deescalate locoregional radiotherapy based on ypN status following ALND



Session: General Session 2

(GS02-07) Loco-Regional Irradiation in Patients with Biopsy-proven Axillary Node Involvement at Presentation Who Become Pathologically Node-negative After Neoadjuvant Chemotherapy: Primary Outcomes of NRG Oncology/NSABP B-51/RTOG 1304

CME/CNE 0.25 AMA PRE Credit Hours

Eleftherios Mamounas (1) Hanna Bandos (2) Julia White (3) Thomas Julian (4) Atif Khan (5) Simona Shaitelman (6)





### **NSABP B-51/RTOG 1304**

**Primary Objective**: to evaluate if adjuvant CWI+RNI significantly <u>improves</u> *Invasive Breast Cancer Recurrence-free Interval* in cN+ pts found to be ypN0 after NAC

Statistics: designed to have 80% power to detect 35% reduction in annual IBCRFI rate (4.6% abs. risk reduction in 5-yr cumulative rate) Final analysis after 172 events or 10 years after study initiation



Patients: From Sep 2013 to Dec 2020, <u>1556 pts</u> (No RNI: 784; RNI: 772) analyzed for diseaserelated endpoints

Median Follow-up Time: 59.5 months

| Characte              | No RNI (%)<br>n=821  | RNI (%)<br>n=820 |    |
|-----------------------|----------------------|------------------|----|
| Tumor Subtype         | Triple-negative      | 21               | 23 |
|                       | ER+ and/or PR+/HER2- | 22               | 20 |
|                       | ER- and PR-/HER2+    | 25               | 24 |
|                       | ER+ and/or PR+/HER2+ | 31               | 33 |
| Breast Surgery        | Lumpectomy           | 58               | 58 |
|                       | Mastectomy           | 42               | 42 |
| Axillary Surgery      | SLNB                 | 55               | 56 |
|                       | ALND (+/-SLNB)       | 45               | 44 |
| pCR in Breast         | No                   | 22               | 21 |
|                       | Yes                  | 78               | 79 |
| Adjuvant Chemotherapy | No                   | 100              | 99 |
|                       | Yes                  | <1               | 1  |





85

88.3%

70

60

1.06 (0.79, 1.44)

p=0.69

88.5%

50



# Events

HR (95%CI), p-v

**5-Year Estimate** 

40

30

RNI

10

20

40

20

0

0

#### Location of Isolated LRR

| Location      | No RNI<br># | RNI<br># | Total<br># |
|---------------|-------------|----------|------------|
| Local         | 2           | 4        | 6          |
| Regional      | 8           | 0        | 8          |
| Loco-regional | 1           | 0        | 1          |
| Total         | 11          | 4        | 15         |



#### **Overall Survival (OS)**



| v                   | ariable                                                         | N                                   | o RNI                        | RNI                                 |                                     |                                            | HR (95% CI)                                                                              | P-interaction |
|---------------------|-----------------------------------------------------------------|-------------------------------------|------------------------------|-------------------------------------|-------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------|---------------|
|                     | All patients                                                    | <b>(D/N)</b><br>59/784              | 5-y est (%)<br>91.8          | <b>(D/N)</b><br>50/772              | 5-y est (%)<br>92.7                 | F                                          | <b>0.88</b> (0.60,1.28)                                                                  |               |
| Age                 | <=49<br>50-59<br>>= 60                                          | 18/311<br>25/257<br>16/216          | 92.8<br>90.4<br>92.4         | 24/312<br>12/254<br>14/206          | 92.0<br>94.4<br>91.7                |                                            | <ul> <li>1.37 (0.74,2.54)</li> <li>0.51 (0.25,1.03)</li> <li>0.96 (0.46,1.99)</li> </ul> | 0.09          |
| Race                | Black<br>White<br>Other                                         | 11/135<br>40/543<br>8/106           | 92.6<br>91.6<br>91.8         | 8/140<br>36/533<br>6/99             | 93.4<br>92.1<br>95.3                |                                            | <b>0.70</b> (0.27,1.77)<br><b>1.00</b> (0.63,1.57)<br><b>0.84</b> (0.28,2.52)            | 0.69          |
| Tumor<br>Subtype    | Triple-negative<br>ER/PR+/HER2-<br>ER/PR-/HER2+<br>ER/PR+/HER2+ | 8/169<br>17/173<br>20/198<br>14/244 | 95.0<br>90.5<br>88.8<br>93.3 | 19/188<br>7/155<br>12/183<br>12/246 | 88.4<br>94.0 ⊢<br>92.4<br>95.7      |                                            | 2.30 (1.00,5.25)<br>0.41 (0.17,0.99)<br>0.63 (0.31,1.28)<br>0.99 (0.46,2.14)             | 0.037         |
| Axillary<br>Surgery | Axil +/- SLNB<br>SLNB alone                                     | 27/357<br>32/427                    | 92.0<br>91.5                 | 25/338<br>25/434                    | <b>91.8</b><br><b>93.5</b><br>0.125 | 0.25 0.5 1 2 4<br>Favors RNI Favors No RNI | <b>1.02</b> (0.59,1.75)<br><b>0.75</b> (0.44,1.26)<br>8                                  | 0.42          |



**Conclusions** 



- In patients who present with biopsy-proven axillary node involvement (cN+) and convert their axillary nodes to ypN0 after NAC, CWI+RNI after mastectomy, or WBI+RNI after lumpectomy, did not improve the 5-year IBCRFI, LRRFI, DRFI, DFS, or OS
- These findings suggest that downstaging involved axillary nodes with neoadjuvant chemotherapy can optimize adjuvant radiotherapy use without adversely affecting oncologic outcomes
- Follow-up of patients for long-term outcomes continues





# **RNI** after NACT

# ClinicalTrials.gov

Comparison of Axillary Lymph Node Dissection With Axillary Radiation for Patients With Node-Positive Breast Cancer Treated With Chemotherapy



https://clinicaltrials.gov/ct2/show/NCT01901094







chemotherapy and adjuvant RT

Integration of RT with systemic

treatments





Systematic Review

Radiotherap

### **SBRT/SRS Brain**

concomitant RT for brain M+ is extremely debated

Cases of clinically symptomatic radiation **necrosis** frequently reported, especially in the case of SRS use

(Stumpf PK *Clin Cancer Res* 2019)

Safety profile of trastuzumab-emtansine (T-DM1) with concurrent radiation therapy: A systematic review and meta-analysis

**Radiation Pneumonitis:** G2+ and G3+: 1% and < 1% [very low heterogeneity (I<sup>2</sup> 0%)]

**Radiation Dermatitis:** G2+ and G3+: 32% and 1% [very low heterogeneity (I<sup>2</sup> 0%)]

T-DM1 and concomitant adj RT seems well tolerated

Loibl S et al. Ann Oncol. (S2) 2020 - Salvestrini V., et al., Radiother Oncol 2023

von Minckwitz G et al. N Engl J Med 2019



# CDK4/6 Inhibitors

No information on concomitant treatment from prospective trials

<u>PALOMA trials</u>: recommended to *suspend palbociclib for 7 days* from the day prior to the RT course <u>MONALEESA trials (NCT01958021, NCT02422615, NCT02278120)</u> : palliative RT *solely for bone pain relief* <u>MONARCH trials (NCT02107703, NCT02246621)</u>: pts requiring RT should have *permanently discontinued therapy* 

| Table 1. Clinically relevant adverse events observed in the abemaciclib + ET arm regardless of causality |             |              |              |                        |             |            |             |                       |  |  |
|----------------------------------------------------------------------------------------------------------|-------------|--------------|--------------|------------------------|-------------|------------|-------------|-----------------------|--|--|
|                                                                                                          | A           | bemaciclib + | ET (N = 279) | L)                     |             |            |             |                       |  |  |
|                                                                                                          | Any grade   | G1           | G2           | Any grade              | G2          | $G \geq 3$ |             |                       |  |  |
| $\geq$ 10% in the abemaciclib $+$ ET arm                                                                 |             |              |              |                        |             |            |             |                       |  |  |
| Patients with $\geq$ 1 AE, <sup>a</sup> n (%)                                                            | 2745 (98.4) | 165 (5.9)    | 1192 (42.7)  | 1388 (49.7)            | 2486 (88.8) | 634 (22.6) | 1396 (49.9) | 456 (16.3)            |  |  |
| Diarrhea                                                                                                 | 2331 (83.5) | 1255 (45.0)  | 857 (30.7)   | 219 (7.8) <sup>b</sup> | 242 (8.6)   | 184 (6.6)  | 52 (1.9)    | 6 (0.2)               |  |  |
| Infections <sup>c</sup>                                                                                  | 1429 (51.2) | 245 (8.8)    | 1029 (36.9)  | 155 (5.6)              | 1102 (39.4) | 229 (8.2)  | 790 (28.2)  | 83 (3.0) <sup>d</sup> |  |  |
| Neutropenia                                                                                              | 1278 (45.8) | 178 (6.4)    | 554 (19.8)   | 546 (19.6)             | 157 (5.6)   | 66 (2.4)   | 68 (2.4)    | 23 (0.8)              |  |  |
| Fatigue                                                                                                  | 1133 (40.6) | 632 (22.6)   | 421 (15.1)   | 80 (2.9)               | 499 (17.8)  | 378 (13.5) | 117 (4.2)   | 4 (0.1)               |  |  |
| Nausea                                                                                                   | 824 (29.5)  | 623 (22.3)   | 187 (6.7)    | 14 (0.5)               | 252 (9.0)   | 198 (7.1)  | 52 (1.9)    | 2 (0.1)               |  |  |
| Anemia                                                                                                   | 681 (24.4)  | 383 (13.7)   | 241 (8.6)    | 57 (2.0)               | 104 (3.7)   | 75 (2.7)   | 19 (0.7)    | 10 (0.4)              |  |  |
| Headache                                                                                                 | 546 (19.6)  | 415 (14.9)   | 123 (4.4)    | 8 (0.3)                | 421 (15.0)  | 321 (11.5) | 95 (3.4)    | 5 (0.2)               |  |  |
| Vomiting                                                                                                 | 491 (17.6)  | 375 (13.4)   | 101 (3.6)    | 15 (0.5)               | 130 (4.6)   | 98 (3.5)   | 29 (1.0)    | 3 (0.1)               |  |  |
| Stomatitis <sup>e</sup>                                                                                  | 385 (13.8)  | 309 (11.1)   | 72 (2.6)     | 4 (0.1)                | 151 (5.4)   | 133 (4.8)  | 18 (0.6)    | 0 (0.0)               |  |  |
| Thrombocytopenia                                                                                         | 373 (13.4)  | 276 (9.9)    | 61 (2.2)     | 36 (1.3)               | 52 (1.9)    | 40 (1.4)   | 8 (0.3)     | 4 (0.1)               |  |  |
| Decreased appetite                                                                                       | 329 (11.8)  | 243 (8.7)    | 70 (2.5)     | 16 (0.6)               | 68 (2.4)    | 53 (1.9)   | 13 (0.5)    | 2 (0.1)               |  |  |
| Alopecia                                                                                                 | 313 (11.2)  | 283 (10.1)   | 30 (1.1)     | N/A                    | 75 (2.7)    | 68 (2.4)   | 7 (0.3)     | 0 (0.0)               |  |  |
| Alanine aminotransferase increase (ALT)                                                                  | 343 (12.3)  | 184 (6.6)    | 82 (2.9)     | 77 (2.8)               | 157 (5.6)   | 113 (4.0)  | 25 (0.9)    | 19 (0.7)              |  |  |
| Aspartate aminotransferase increase (AST)                                                                | 330 (11.8)  | 220 (7.9)    | 58 (2.1)     | 52 (1.9)               | 137 (4.9)   | 103 (3.7)  | 19 (0.7)    | 15 (0.5)              |  |  |
| Rash                                                                                                     | 312 (11.2)  | 239 (8.6)    | 61 (2.2)     | 11 (0.4)               | 127 (4.5)   | 104 (3.7)  | 23 (0.8)    | 0 (0.0)               |  |  |
| Other AEs of interest—composite terms                                                                    |             |              |              |                        |             |            |             |                       |  |  |
| VTE <sup>f</sup>                                                                                         | 71 (2.5)    | 2 (0.1)      | 31 (1.1)     | 38 (1.4) <sup>h</sup>  | 17 (0.6)    | 0 (0.0)    | 9 (0.3)     | 8 (0.3)               |  |  |
| PE <sup>g</sup>                                                                                          | 28 (1.0)    | N/A          | N/A          | 28 (1.0) <sup>i</sup>  | 4 (0.1)     | N/A        | N/A         | 4 (0.1)               |  |  |
| ILD                                                                                                      | 89 (3.2)    | 44 (1.6)     | 34 (1.2)     | 11 (0.4)               | 37 (1.3)    | 26 (0.9)   | 10 (0.4)    | 1 (0.0)               |  |  |
| Pneumonitis                                                                                              | 49 (1.8)    | 21 (0.8)     | 21 (0.8)     | 7 (0.3)                | 10 (0.4)    | 7 (0.3)    | 3 (0.1)     | 0 (0.0)               |  |  |
| Radiation pneumonitis                                                                                    | 25 (0.9)    | 13 (0.5)     | 10 (0.4)     | 2 (0.1)                | 15 (0.5)    | 9 (0.3)    | 5 (0.2)     | 1 (0.0)               |  |  |
| Increased transaminases <sup>ĸ</sup>                                                                     | 433 (15.5)  | 241 (8.6)    | 94 (3.4)     | 98 (3.5)               | 209 (7.5)   | 143 (5.1)  | 38 (1.4)    | 28 (1.0)              |  |  |

#### **MonarchE trial**

**Radiation pneumonitis** in patients previously treated with RT were **similar in the two arms** 

Half of the ILD events were asymptomatic.

CDK4/6i and concomitant adjuvant RT should be investigated in clinical trials



### PARPi

#### JAMA Oncology | Original Investigation

### Concurrent Olaparib and Radiotherapy in Patients With Triple-Negative Breast Cancer The Phase 1 Olaparib and Radiation Therapy for Triple-Negative Breast Cancer Trial

Table 2. Treatment-Related Adverse Events Reported During Follow-up

|                        | Toxic effects by olaparib dose and toxic effect grade, No. <sup>a</sup> |   |   |   |         |   |                    |   |   |   |   |   |   |   |   |   |
|------------------------|-------------------------------------------------------------------------|---|---|---|---------|---|--------------------|---|---|---|---|---|---|---|---|---|
|                        | 50 mg Twice daily 100 mg Twice daily 150 mg Twice daily                 |   |   |   | e daily |   | 200 mg Twice daily |   |   |   |   |   |   |   |   |   |
| Toxic effect           | 1                                                                       | 2 | 3 | 4 | 1       | 2 | 3                  | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 1-y Follow-up (n = 23) |                                                                         |   |   |   |         |   |                    |   |   |   |   |   |   |   |   |   |
| Pain                   | 0                                                                       | 0 | 0 | 0 | 0       | 1 | 0                  | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| Fibrosis               | 0                                                                       | 0 | 0 | 0 | 0       | 1 | 0                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Deformity              | 0                                                                       | 0 | 0 | 0 | 0       | 1 | 0                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Skin hyperpigmentation | 0                                                                       | 0 | 0 | 0 | 1       | 0 | 0                  | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| Telangiectasia         | 0                                                                       | 0 | 0 | 0 | 1       | 0 | 0                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Lymphedema             | 0                                                                       | 0 | 0 | 0 | 0       | 0 | 0                  | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2-y Follow-up (n = 20) |                                                                         |   |   |   |         |   |                    |   |   |   |   |   |   |   |   |   |
| Pain                   | 0                                                                       | 0 | 0 | 0 | 1       | 1 | 0                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Fibrosis               | 0                                                                       | 0 | 0 | 0 | 0       | 1 | 0                  | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| Deformity              | 0                                                                       | 0 | 0 | 0 | 0       | 1 | 0                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Skin hyperpigmentation | 0                                                                       | 0 | 0 | 0 | 0       | 0 | 0                  | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| Telangiectasia         | 0                                                                       | 0 | 0 | 0 | 3       | 0 | 0                  | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| Lymphedema             | 0                                                                       | 0 | 0 | 0 | 0       | 0 | 0                  | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Olaparib in combination with breast RT in patients with TNBC was well tolerated Results suggest that olaparib could be safely started earlier in combination with radiotherapy

Available data on this combination are <u>scarce</u>. There is a shortage of long-term safety data and little evidence demonstrating a clinically significant benefit

It remains preferable to not use RT concurrently with PARP inhibitors

<sup>a</sup> Toxic effect grades are based on Common Terminology Criteria for Adverse Events, version 4.03.<sup>9</sup>



# Capecitabine

Combining Adjuvant Radiotherapy With Capecitabine in Chemotherapy-resistant Breast Cancer: Feasibility, Safety, and Toxicity

Alexander D. Sherry,<sup>1</sup> Ingrid A. Mayer,<sup>2</sup> Diandra N. Ayala-Peacock,<sup>3</sup> Vandana G. Abramson,<sup>2</sup> Brent N. Rexer,<sup>2</sup> A. Bapsi Chakravarthy<sup>3</sup>

**Retrospective** on TNBC (stage I-III)

**Cape-RT** (16 pts) matched 1:3 with **RT alone** (48 pts)

Radiation dermatitis: not significantly different

Capecitabine-RT group more **modifications in the RT schedule** (44% vs 17%) Concurrent use of capecitabine with radiation therapy and survival in breast cancer (BC) after neoadjuvant chemotherapy

Matched cohort retrospective study on TNBC

21 pts matched 2:1 with 254 NO capecitabine/RT All pts received A/T-based NAC and adj RT



Sherry A et al, Clinical Breast Cancer 2020

Liu YL et al. Clin Transl Oncol 2018



# Immunotherapy

### **Keynote-522 trial**



Primary endpoints: pCR (ypT0/Tis ypN0) by local review, EFS by local review

Secondary endpoints: pCR (ypT0 ypN0 and ypT0/Tis), OS, EFS, AE

Several studies of concurrent ICIs and chemoradiation from head and neck and non-small cell lung cancer

Acceptable safety profiles with concurrent use compared with pembrolizumab or chemoradiation alone

After an amendment *concurrent administration RT/Pembro* permitted

#### Supplementary Materials Locoregional AEs potentially associated with RT were rare

During the adjuvant phase of the study: <u>Severe skin reaction</u> 1.6% vs 0% <u>Pneumonitis</u>: 0.9% vs 0.6% <u>Myocarditis</u> 0.4% vs 0%

Interestingly, LR AEs *during the neoadjuvant phase similar or higher* than during the adjuvant phase



# Immunogenic effect of the RT



#### Immunogenic cell death

Upregulation of MHC class I (by RT-induced activation of mTOR) Cell surface translocation of calreticulina (DC "eat-me" signal) HMGB1: immune system's *nuclear weapon* 

Upregulation of **FAS** (which mediate apoptotic cell death)



**Dendritic cell activation** driven by calreticulina and HMGB1 RT increases **cross-presentation of tumour-associated epitopes** to CD8 in the draining lymph node (mediated by  $INF-\gamma$ )

Activation and proliferation of antigen-specific T-cell populations to initiate an immune response RT increases the density of **tumourinfiltrating lymphocytes (TILs)** with a mechanism probably multifactorial:

- changes in vascular endothelium enhance immune-cell extravasation (E-selectin and ICAM-1)
- increased expression of *chemokine* attractants enhances immune-cell migration and invasion (CXCL16, CXCL21)
- Recruitment and Repolarization
   toward M1 phenotype Tumor
   Associated Macrophages



# Immunosuppressive effect



Irradiation induces *Langerhans cells* to migrate from the skin to lymph nodes, where they **stimulate regulatory Tcells** 

Elective Nodal Irradiation Attenuates the Combinatorial Efficacy of Radiation Therapy and Immunotherapy

# Conclusion

**X**@brunomeduri

### Response to neoadjuvant chemotherapy and adjuvant RT

- Accurate staging pre-NAD CHT (optimal imaging and better nodal characterization)
- Possible de-escalation in cT1-2 cN1 with pCR

# Integration of RT with systemic treatments

> RT and concomitant adjuvant systemic therapy in patients without

pCR (<u>Cautionary</u>: Capecitabine, PARPi, CDK4/6; <u>Suitable</u>: ICIs, TDM-1)

RT-immunotherapy: complex interactions – work in progress

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Modena Policlinico

# Thank you for your attention







«...Everyone else would climb a peak by looking for a path somewhere on the mountain ...someone would climb another mountain altogether and from that distant peak would shine a searchlight back on the first peak...»