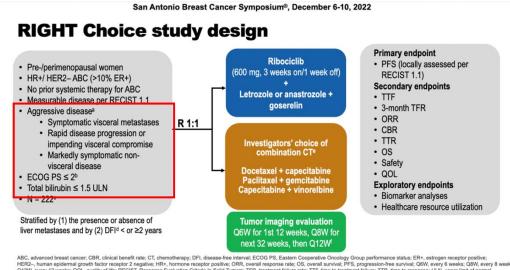

La chemioterapia nel carcinoma mammario metastatico: quale ruolo ha oggi?

Antonella Ferro Trento


....THE CHEMO IN
THE TARGET
THERAPIES AND
ADCS ERA

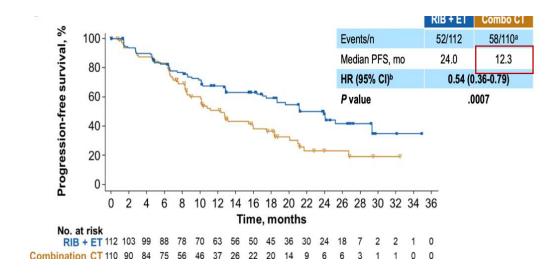
HR+/HER2 NEGATIVE MBC

According to the 5th ESO-ESMO international consensus guidelines (Cardoso F, et al. Ann Oncol 2020;31:1623-1649) for advanced breast cancer visceral crisis is defined as: "severe organ dysfunction, as assessed by signs and symptoms, laboratory studies and rapid progression of disease. Visceral crisis is not the mere presence of visceral metastases but implies important organ compromise leading to a clinical indication for the most rapidly efficacious therapy."

Chemo or ET +CDK4/6i as first line in very aggressive disease?

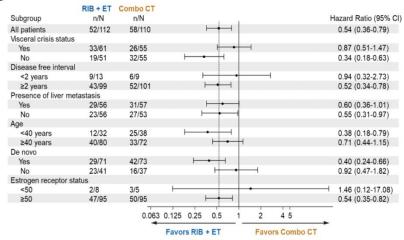
HER2-, human epidermal growth factor receptor 2 negative; HR+, hormone receptor positive; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; C6W, every 6 weeks; C6W, every 8 weeks; C1W, every 6 w *Where combination CT is clinically indicated by physician's judgment.* For patients with ECOG 2, the poor performance status should be due to breast cancer. *Patients were enrolled from Feb 2019 to Nov 2021.* Disease-fee interval is defined asked by physician's judgment.* For patients with ECOG 2, the poor performance status should be due to breast cancer. *Patients were enrolled from Feb 2019 to Nov 2021.* Disease-fee interval is defined asked by physician's judgment.* For patients were profiled from Feb 2019 to Nov 2021.* Disease-fee interval is defined asked by physician's judgment.* For patients were profiled from Feb 2019 to Nov 2021.* Disease-fee interval is defined asked by physician's judgment.* For patients were profiled from Feb 2019 to Nov 2021.* Disease-fee interval is defined asked by physician's judgment.* For patients were patients were profiled from Feb 2019 to Nov 2021.* Disease-fee interval is defined asked by physician's judgment.* For patients with ECOG 2, the poor performance status should be due to breast cancer. *Patients were enrolled from Feb 2019 to Nov 2021.* Disease-fee interval is defined by physician's judgment.* For patients with ECOG 2, the poor performance status should be due to breast cancer. *Patients were enrolled from Feb 2019 to Nov 2021.* Disease-fee interval is defined by physician's judgment.* For patients with ECOG 2, the poor performance status should be due to breast cancer. *Patients were enrolled from Feb 2019 to Nov 2021.* Disease-fee interval is due to be patients with ECOG 2, the poor performance status should be due to breast cancer. *Patients were enrolled from Feb 2019 to Nov 2021.* Disease-fee interval is due to be patients with ECOG 2, the poor performance status should be due to breast cancer. *Patients were enrolled from Feb 2019 to Nov 2021.* Disease-fee interval is due to be patients with ECOG 2, the poor performance status should be supported by the ECOG 2, the poor performance status should be supported by the ECOG 2, the poor performance status shou because of toxicity, the patient was allowed to continue on the other, better-tolerated CT drug (monotherapy); 'Until disease progression, death, withdrawal of consent, loss to follow-up, or patient/guardian decision, and at San Antonio Breast Cancer Symposium®, December 6-10, 2022

Baseline characteristics were well balanced


Parameter, n (%)	RIB + ET n = 112	Combo CT n = 110	Parameter, n (%)	RIB + ET n = 112	Combo CT n = 110
Median age, years	44.0	43.0	Disease status		
≥40 years	80 (71.4)	72 (65.5)	De novo	71 (63.4)	73 (66.4)
Race ^a	, , , , , , , , , , , , , , , , , , , ,		Visceral metastatic sites ^b		
Asian	60 (53.6)	58 (52.7)	Liver	56 (50.0)	57 (51.8)
20040000	N 60	N 6	Lung	63 (56.3)	58 (52.7)
White	51 (45.5)	52 (47.3)	Liver or lung	89 (79.5)	85 (77.3)
Histological grade			Aggressive disease chara	cteristic	
Grade 1	10 (8.9)	16 (14.5)	Rapid progression	23 (20.5)	18 (16.4)
Grade 2	66 (58.9)	61 (55.5)	Symptomatic non-	15 (13.4)	16 (14.5)
Grade 3	35 (31.3)	29 (26.4)	visceral disease	10 (10.4)	10 (14.0)
≥50% ER+	95 (84.8)	95 (86.4)	Symptomatic visceral metastases	74 (66.1)	76 (69.1)
PR+	99 (88.4)	102 (92.7)	Visceral crisis ^c	61 (54.5)	55 (50.0)

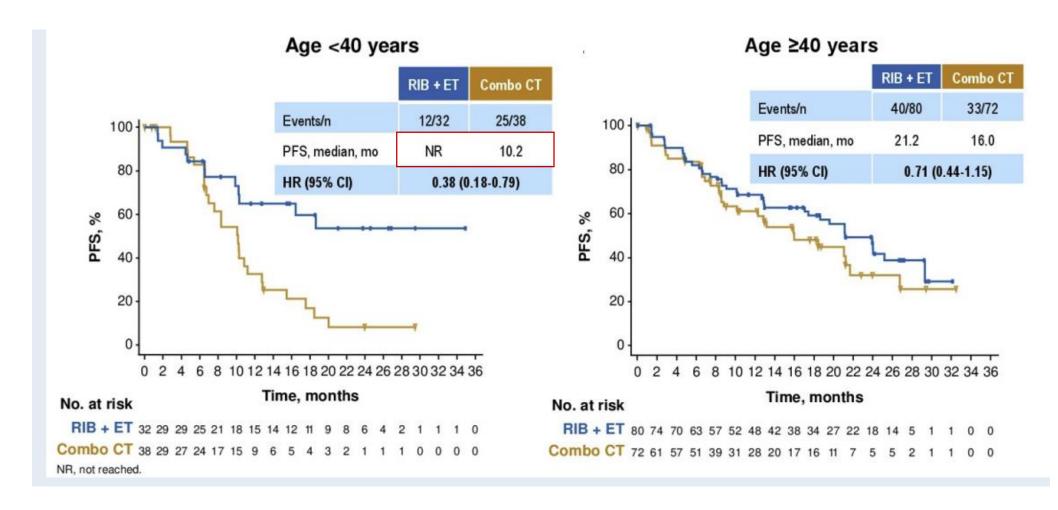
Combo CT, combination chemotherapy; ER+, estrogen receptor positive; ET, endocrine therapy; RIB, ribociclib

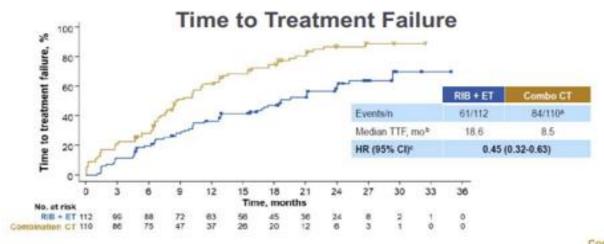
One patient (0.9%) in the RIB arm was African American; The same patient may have multiple visceral metastatic sites. Based on PI's judgment, which followed ABC3 and NCCN guidelines, which were available at the time This presentation is the intellectual property of the author/presenter. Contact them at yslu@ntu.edu.tw for permission to reprint and/or distribute.

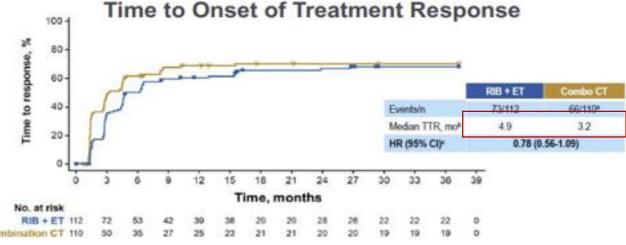

RIGHT Choice trial: results

PFS

San Antonio Breast Cancer Symposium®, December 6-10, 2022


PFS benefit with RIB + ET over combination CT was consistent across most subgroups of patients with aggressive HR+/HER2- ABC


ABC, advanced breast cancer; Combo CT, combination chemotherapy; ET, endocrine therapy; HER2-, human epidermal growth factor receptor 2 negative; HR+, hormone receptor positive; PFS, progression-fresurvival; RIB, ribociclib.


Lu Y-S, et al. Presented at: San Antonio Breast Cancer Symposium (SABCS) 2022; December 6-10, 2022; San Antonio, TX. Presentation GS1-10.

RIGHT Choice: Progression-Free Survival (PFS) by Age

RIGHT Choice TTF and Response

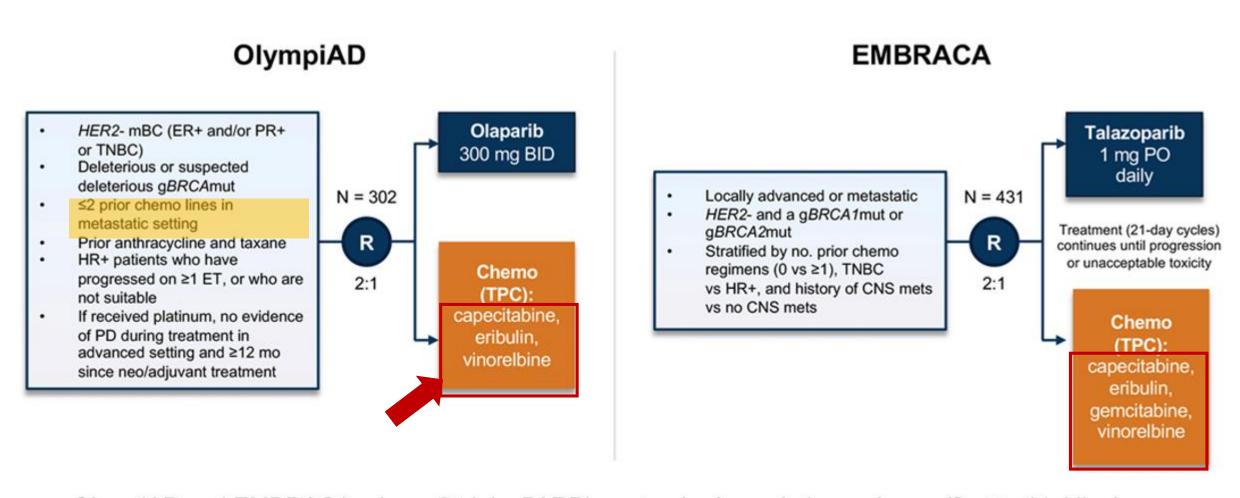
Dose Reductions

Parameter, n (%)	Ribociclib + ET (n = 112)	Combination CT (n = 100)
0	81 (72.3)	54 (54.0)
1	27 (24.1)	12 (12.0)
2	4 (3.6)	14 (14.0)
≥ 3	0	20 (20.0)

	Ribociclib + ET (n = 112)	Combination CT (n = 100)
ORR, %	65.2	60.0
CBR, %	80.4	72.7

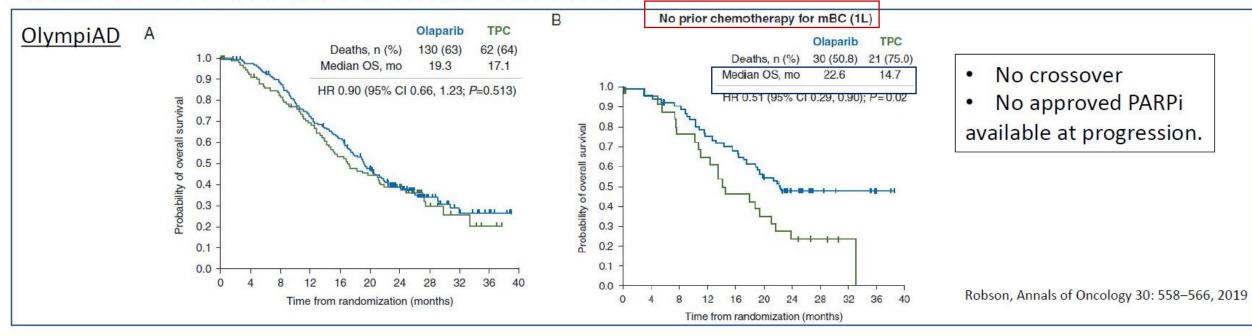
What is best therapy post-CDK4/6 progression?

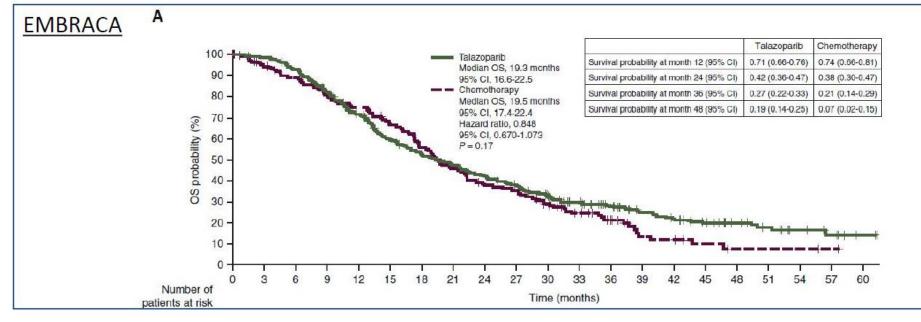
A grey zone between 1st line ET and 1st line chemotherapy with PFS ranged from 3 to 7months


- 1) Can we Continue CDK4/6i therapy after progression to CDK4/6?
- 2) Have a role mono-endocrine therapies?
 - Fulvestrant and Novel Oral SERDs
- 3) Have a role inhibitors of PI3K/AKT/mTOR signaling pathway?
- 4) Chemotherapy

Endocrine refractory HR+HER2negative disease

SYSTEMIC THERAPY REGIMENS FOR RECURRENT UNRESECTABLE (LOCAL OR REGIONAL) OR STAGE IV (M1) DISEASE^a


HE	HR-Positive and HER2-Negative with Visceral Crisis [†] or Endocrine Refractory				
Setting	Subtype/Biomarker	Regimen			
First Line	No germline <i>BRCA1/2</i> mutation ^b	Systemic chemotherapy BINV-Q (5)			
	Germline BRCA1/2 mutation ^b	PARPi (olaparib, talazoparib) ^c (Category 1, preferred)			
Second Line	HER2 IHC 1+ or 2+/ISH negative ^d	Fam-trastuzumab deruxtecan-nxki ^e (Category 1, preferred)			
	Not a candidate for fam-trastuzumab	Sacituzumab govitecan ^f (Category 1, preferred)			
	deruxtecan-nxki	Systemic chemotherapy BINV-Q (5)			
Third Line and beyond	Any	Systemic chemotherapy BINV-Q (5)			
	Biomarker positive (ie, MSI-H, NTRK, RET, TMB-H)	Targeted agents BINV-Q (6)			


Phase 3 PARPi trials in MBC

- OlympiAD and EMBRACA: phase 3 trials, PARPi vs standard nonplatinum chemo (first to third line)
- 1. Litton JK et al. N Engl J Med. 2018;379:753-763. 2. Robson M et al. N Engl J Med. 2017;377:523-533.

Phase III Trials: Final Overall Survival Data

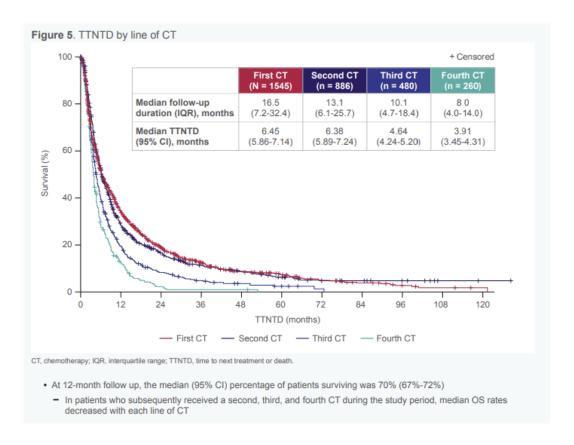
- 25% of chemo received olaparib in subsequent lines
- v. 2.8% of talazoparib.
- CDK4/6i: 13.6% talazoparib
- v. 10.4% chemotherapy

Litton, Annals of Oncology, 31: 1526-1535, 2020

Endocrine resistant setting

- Patients with tumours that are endocrine resistant should be considered for ChT [V, B]
- Sequential single-agent ChT is generally preferred over combination strategies.
- In patients where a rapid response is needed due to imminent organ failure,
 combination ChT is preferred [II, A]
- The optimal sequence of regimens preferably includes low toxic agents in early lines of treatment

Systemic Chemotherapy for HR-Positive or -Negative and HER2-Negative ^{a,s,t,u,v}				
Preferred Regimens	Other Recommended Regimens	Useful in Certain Circumstances		
 Anthracyclines Doxorubicin Liposomal doxorubicin Taxanes 	 Cyclophosphamide Docetaxel Albumin-bound paclitaxel Epirubicin 	AC (doxorubicin/cyclophosphamide) EC (epirubicin/cyclophosphamide) CMF (cyclophosphamide/ methotrexate/fluorouracil)		
 Paclitaxel Anti-metabolites Capecitabine Gemcitabine 	Ixabepilone	Docetaxel/capecitabine GT (gemcitabine/paclitaxel) Gemcitabine/carboplatin Carboplatin + paclitaxel or albumin-bound paclitaxel		
Microtubule inhibitors Vinorelbine Eribulin				


What does the real world tell us?

Real-world treatment (Tx) patterns in patients (pts) with HR+/HER2 neg MBC treated with chemotherapy (CT) in the United States (US)

• Capecitabine and paclitaxel were most commonly used in earlier lines of CT included.

Treatment type*	1st CT N=1545	2nd CT n=886	3rd CT n=480	4th CT n = 260
Taxanes				
Paclitaxel	29%	35%	25%	17%
Docetaxel	7%	5%	3%	4%
Anthra cyclines				
Doxorubicin	11%	7%	12%	11%
Epirubidn	<1%	<1%	1%	<1%
Platinum agents				
Cisplatin	1%	1%	<1%	<1%
Carboplatin	6%	7%	8%	8%
Pyrimidine analogue	s			
Capecitabine	45%	30%	22%	16%
Gemcitabine	8%	13%	18%	22%
Other				
Eribulin	3%	11%	19%	20%
Vinorelbine	1%	496	496	11%

^{*}The proportion of pts may add up to greater than 100% as the subgroups are not mutually exclusive.

Time to next Tx or death decreased with each subsequent CT received, indicating a high unmet need for more efficacious treatment options for ET resistant HR+/HER2- mBC

CT, chemotherapy, mBC, metastatic breast cancer; pts, patients.

What does the MBC history tell us?

Use and Duration of Chemotherapy in MBC patients

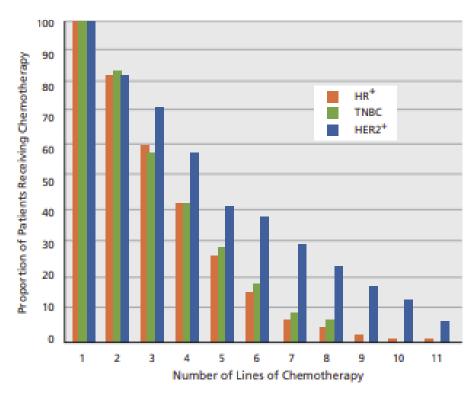
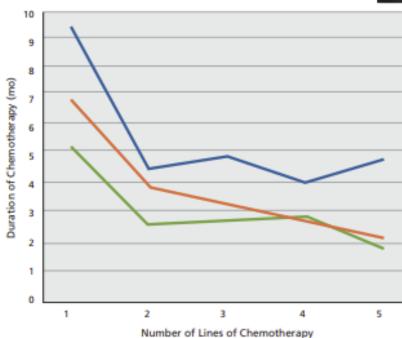



Figure 2 Number of lines of chemotherapy by line and subtype.

Abbreviations: HR, hormone receptor; TNBC, triple-negative breast cancer.

	Number of Patients				
	First line	Second line	Third line	Fourth line	Fifth line
HR+	96	80	59	41	26
TNBC	44	37	26	19	13
HER+	59	49	43	35	25

Seah et al JNCCN 2014

What does the MBC history tell us?

Median chemotherapy duration in observational studies in first- until third-line

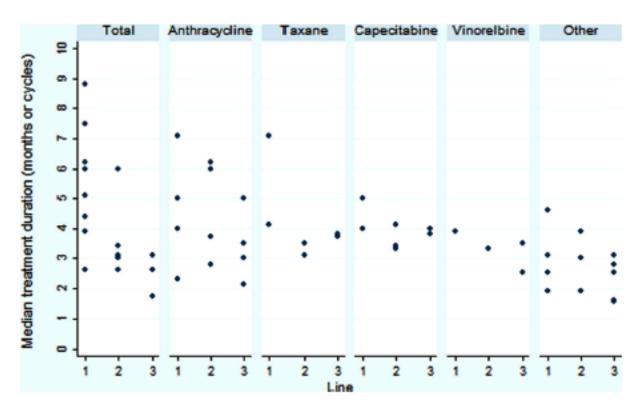


Fig. 1. Overview of median chemotherapy duration in observational studies in first- until third-line. Median chemotherapy duration per line without specification of agents used (overall) in 9 observational studies; and grouped per type of agent(s)* used (anthracytaxanes, capecitabine, vinorelbine, observational studies. *Anthracylines included regimens containing either doxorubicin or epirubicin, taxanes included regimens containing either (liposomal) docetaxel or (nab-)paclitaxel. Other chemotherapy included regimens containing the following agents: bleomycin, carboplatin, cisplatin, cyclophosphamide, eribulin, (5-)fluorgemcitabine, ifosfamide, methotrexate, mitomycin C, mitozantrone, and vinblastine. NOTE: results shown here should be interpreted in relation with Fig. 2 which indicates that later-line chemotherapy is generally less effective; thereby limiting the treatment duration as a result of progression of disease. Additionally, comparison of treatment duration between different agents is biased by the imbalanced number of patients.

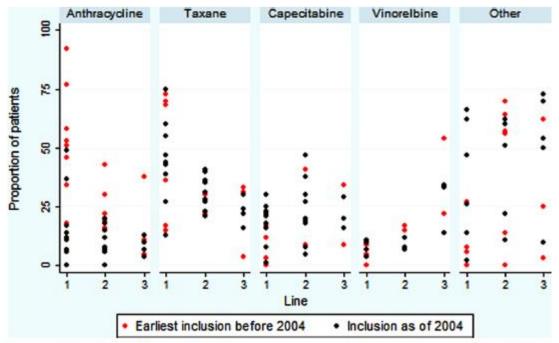
What does the MBC history tell us?

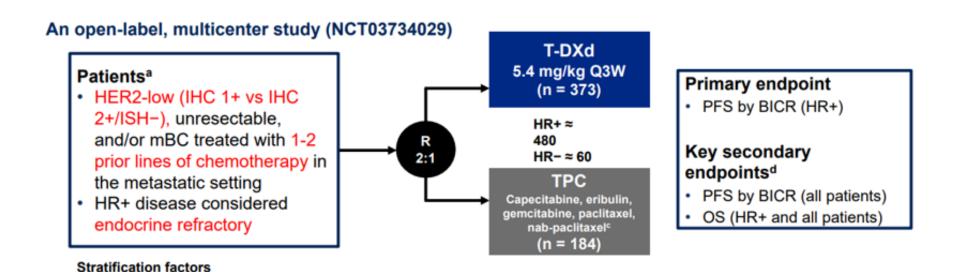
Outcomes in observational studies on multiple lines of chemotherapy for MBC



Fig. 2. Overview of outcomes in observational studies on multiple lines of chemotherapy for advanced breast cancer. A) Median line-specific overall response-rate of chemotherapy from 12 observational studies. B) Median line-specific progression-free survival of chemotherapy from 8 observational studies.

What does the MBC history tells us?




Fig. 3. Overview of the use of different groups of chemotherapy agents (proportion of patients) for first- until third-line in 16 observational studies.

 The questions on the optimal agent for a specific treatment line and the optimal sequence of agents over multiple lines remains unanswered

 Capecitabine, despite the increasing use in first-line over the years, still more often prescribed from second-line onwards

What do the recent history tell us?

Destiny 04: ADCs in HER2 low MBC

Centrally assessed HER2 status^b (IHC 1+ vs IHC 2+/ISH-)

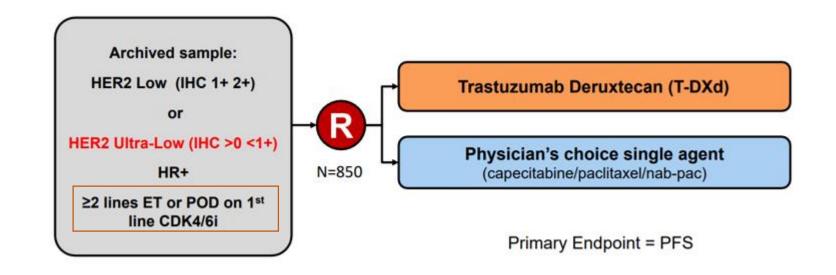
. HR+ (with vs without prior treatment with CDK4/6 inhibitor) vs HR-

1 vs 2 prior lines of chemotherapy

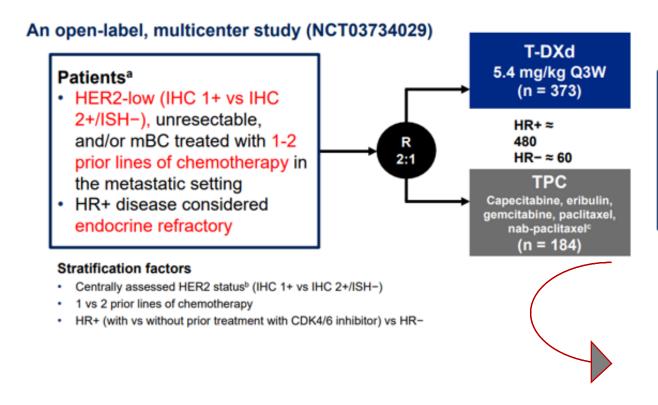
Prior chemotherapies

DESTINY-Breast04: January 11, 2022, DCO Subgroup analysis: PFS in all patients a

chemotherapy in early breastcancef Defined as prior anticancer therapy of 'anthracyclines,' 'doxorubicin,' 'epirubicin,' 'daunorubicin,' or 'idarubicin' in CMDECOD and CMTRT in ADCM.


Favors T-DXd **Favors TPC**

Harbeck N et al. Presented at San Antonio Breast Cancer Symposium 2022; December 59, 2022; San Antonio, TX. Poster P1 -11-0.

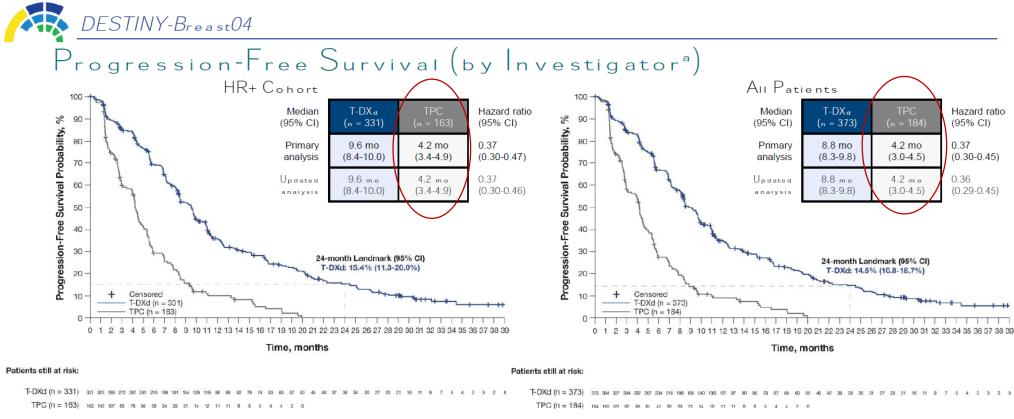

DESTINY Breast-06: <u>Chemotherapy-naïve</u>, HR+, HER2 LOW or HER2 Ultra-Low MBC

Key differences with DB-04:

- Includes IHC0 (ultra-low)
- Larger (n=850)
- Restricted to HR+ disease
- · Chemo-naïve patients

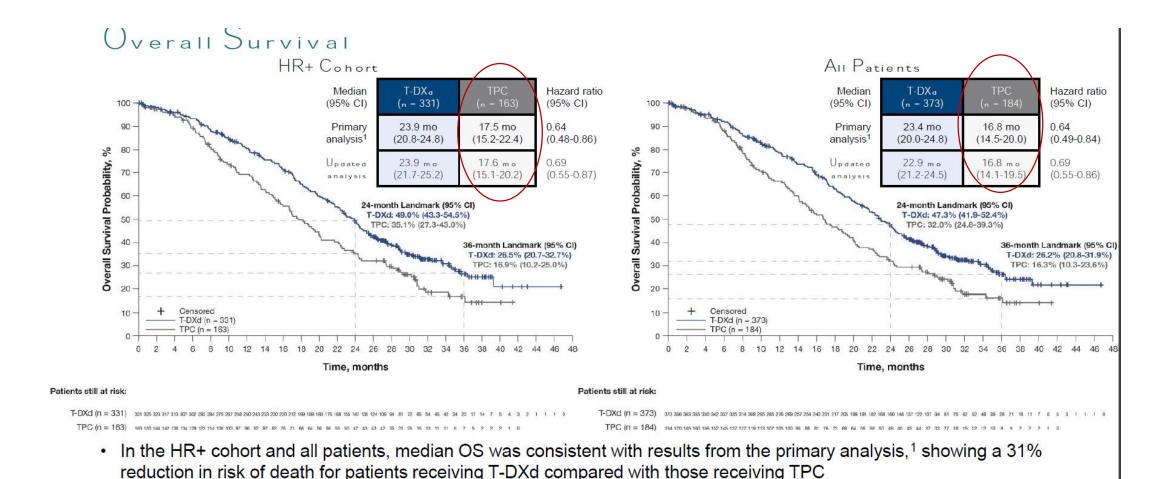
Destiny 04: ADCs in HER2 low MBC

Primary endpoint


PFS by BICR (HR+)

Key secondary endpoints^d

- · PFS by BICR (all patients)
- · OS (HR+ and all patients)


Chemotherap	y, n (%)
Eribulin	94 (51.1)
Capecitabine	37 (20.1)
Nab- paclitaxel	19 (10.3)
Gemcitabine	19 (10.3)
Paclitaxel	15 (8.2)

Destiny 04: PFS 32 months Follow up

• Median PFS was consistent with results from the primary analysis, showing a reduction in risk of disease progression or death of 63% and 64% in the HR+ cohort and all patients, respectively, for the T-DXd arm compared with the TPC arm

Destiny 04: OS at 32 months Follow up

Modi S ESMO 2023

PFS2

PFS2^a and Post-Study Anticancer Therapies^b

	HR+ (HR+ Cohort		tients
	T-DXa (n = 331)	TPC (n = 163)	T-DX _d (n = 373)	TPC (n = 184)
Median PFS2 by investigator, mo (95% CI)	15.5 (13.8-17.2)	10.5 (8.3-11.4)	15.4 (13.6-16.5)	9.7 (8.3-10.8)
Hazard ratio (95% CI)	0.51 (0	0.51 (0.40-0.64)		41-0.64)
Post-study anticancer therapies				
Systemic treatment, n (%)	247 (74.6)	126 (77.3)	282 (75.6)	144 (78.3)
Targeted therapy ^c	119 (36.0)	70 (42.9)	134 (35.9)	75 (40.8)
CDK4/6 inhibitors	47 (14.2)	27 (16.6)	48 (12.9)	27 (14.7)
ADC	16 (4.8)	15 (9.2)	18 (4.8)	15 (8.2)
T-DXd	2 (0.6)	4 (2.5)	2 (0.5)	4 (2.2)
Sacituzumab govitecan	9 (2.7)	5 (3.1)	11 (2.9)	5 (2.7)
Endocrine therapy	102 (30.8)	56 (34.4)	103 (27.6)	57 (31.0)
Chemotherapy	222 (67.1)	109 (66.9)	257 (68.9)	126 (68.5)
Radiation, n (%)	32 (9.7)	25 (15.3)	37 (9.9)	29 (15.8)
Surgery, n (%)	3 (0.9)	1 (0.6)	5 (1.3)	1 (0.5)

Which chemo?

EMBRACE Compared Eribulin with 'Real-life' Treatment Choices

Global, open-label, randomised, phase III study

Eribulin mesylate (n=508) Patients (N=762) 1.4 mg/m^{2*} IV over Primary Endpoint: Locally recurrent or MBC 2-5 minutes on Day 1,8 q21 days 2–5 prior chemotherapies OS ≥ 2 for advanced disease RANDOMISATION 2:1*** Prior anthracycline and taxane Secondary Endpoints: TPC (n=254): Progression ≤ 6 months of PFS Any monotherapy (cytotoxic, last chemotherapy ORR hormonal biological)**; or Neuropathy ≤ grade 2 Safety Palliative treatment; or ECOGPS ≤ 2 Radiotherapy

ECOG PS, Eastern Cooperative Oncology Group performance status

- *Equivalent to 1.23 mg/m² enbulin
- **Approved for treatment of cancer and administered according to local practice
- ***Patients were stratified by geographic region, prior capecitabine treatment, and human epidermal growth factor receptor 2 (HER2/neu) status before randomisation
- Patients were treated with eribulin mesylate or TPC until disease progression, unacceptable toxicity, patient/physician request to discontinue or serious protocol non-compliance
- Exploratory subgroups: Hormone receptor expression status (ER, PgR, HER2, triple-negative); number of organs involved; sites of disease

EMBRACE RESULTS: OS

Eribulin showed a significant and clinically meaningful improvement in overall survival compared with TPC in women with heavily pretreated metastatic breast cancer

The median duration of eribulin treatment (n=503) was 3.9 months (range 0.7-16.3)

Capecitabine in MBC

- Advantage: its oral administration
- Capecitabine as monotherapy is indicated for the second- and subsequent-line treatment
 of patients with MBC resistant to both paclitaxel and an anthracycline-containing
 chemotherapy regimen or in patients resistant to paclitaxel and for who further
 anthracycline therapy is not indicated.
- In patients with MBC previously treated with anthracyclines and/or taxanes
 - Response rates 15%–28%
 - TtP was 3–5 months
 - OS was 10–15 months
- Approved dosing: 1250 mg/mq twice daily on days 1-14 every 21 days

X-7/7 Study Design

ELIGIBILITY

- Adult female patients with pathologically confirmed MBC
- Any prior number of chemo or endocrine therapies
- Any breast cancer subtype
- HER2+ required concurrent trastuzumab
- > CrCl >50 mL/min

STRATIFICATION

- Line of chemotherapy (first or subsequent line)
- > Measurable or nonmeasurable disease
- > ER status

FD-7/7 Arm (N=80)

Capecitabine 1500 mg PO BID x7 days followed by 7-day rest

SD-14/7 Arm (N=73)

Capecitabine 1250* mg/m² PO BID x14 days followed by 7-day rest

*Physician had discretion to use alternative dosing of 1000 mg/m² PO BID (N=11)

- > CT C/A/P and bone scan every 12 weeks
- Cycles repeated every 14 (FD-7/7) or 21 (SD-14/7) days until PD, unacceptable toxicity, or delays >4 weeks
- Capecitabine toxicities were solicited at each visit

ENDPOINTS

- > Primary: 3-month PFS
- Secondary: PFS, Overall Survival, Objective Response Rate, Toxicity

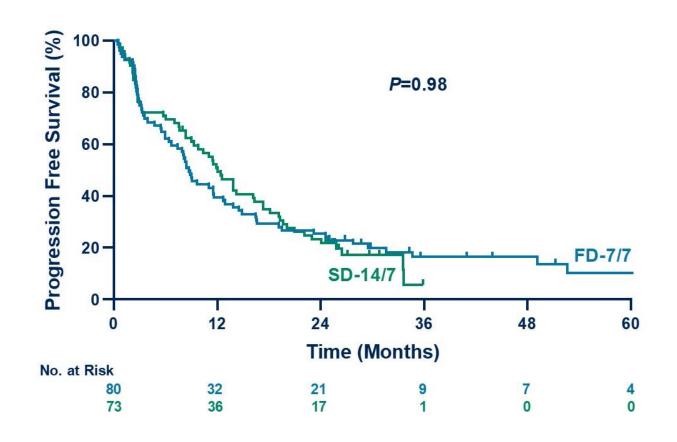
DBY: Qamar Khan, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

1:1

Baseline Characteristics

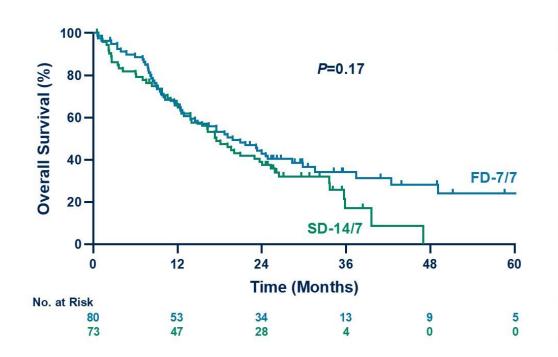
Characteristic	Overall (N=153)	FD-7/7 (N=80)	SD-14/7 (N=73)	P-value
Median Age, range- yr	60	59.1 (35-84)	60.9 (32-87)	0.33
Sex, Female- %	100	100	100	
Race/ethnicity- n (%)				0.69
White	131 (85.6)	70 (87.5)	61 (83.6)	
African American	13 (8.5)	5 (6.3)	8 (11)	
Hispanic	5 (3.3)	3 (3.8)	2 (2.7)	
American Indian, Alaska Native	1 (0.7)	1 (1.3)	0	
Other	3 (2.0)	1 (1.3)	2 (2.7)	
Visceral metastasis- n (%)				0.89
Yes	68 (44)	36 (45)	32 (44)	
No	85 (56)	44 (55)	41 (56)	
Breast Cancer Subtypes- n (%)				0.993
HR positive, HER2 negative	119 (78)	63 (79)	56 (77)	
HER2 positive	17 (11)	8 (10)	9 (12)	
Triple negative	17 (11)	9 (11)	8 (11)	
Prior lines of chemotherapy- n (%)				0.151
0	99 (65)	56 (70)	43 (59)	
<u>></u> 1	54 (35)	24 (30)	30 (41)	
Measurable Disease- n (%)				0.36
Yes	102 (67)	56 (70)	46 (63)	
No	51 (33)	24 (30)	27 (37)	



Progression Free Survival

	FD-7/7 (N=80)	SD-14/7 (N=73)		
PFS events (%)	67 (83.7)	59 (80.8)		
Median PFS, months (95% CI)	8.7 12.07 (6.4-11.6) (8.9-16.3)			
Log-rank test p- value	0.98			
HR (95% CI)	1.00 (0.70-1.43)			
Non-proportionality p-value*	0.045			
RMST at 36 months, months (95% CI)	13.9 14.6 (11.1-16.7) (11.9-17.3)			
RMST difference, months (95% CI)	0.7 (-3.14, 4.57)			

^{*}Model assumptions were not valid; visually observed by KM curves crossing



ESENTED BY: Qamar Khan, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Overall Survival

	FD-7/7 (N=80)	SD-14/7 (N=73)		
Deaths	53	53		
(%)	(66.2)	(72.6)		
Median OS, months	19.8 17.5			
(95% CI)	(12.9-28.3) (12.5-34)			
Log-rank test p- value	0.17			
HR	0.76			
(95% CI)	(0.52-1.12)			
Non-proportionality p-value	0.020			
RMST at 47 months, months (95% CI)	24.5 20.9 (20.7-28.3) (17.3-24.5)			
RMST difference,	-3.6			
months (95% CI)	(-8.89, 1.54)			

PRESENTED BY: Qamar Khan, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

- · Similar efficacy with no difference in PFS and OS
- · Lower incidence of HFS, diarrhea, and stomatitis
- Fewer treatment discontinuations and dose modifications

FD-7/7 may be an alternative dosing option to minimize toxicity while maintaining outcomes in MBC

Metronomic chemotherapy and drug repurposing

- Metronomic chemotherapy involves the administration of chemotherapeutic regimens at lower doses, without long drug-free intervals that have previously been a hallmark of such treatments.
- This method offers a significant reduction in side effects and improved disease management

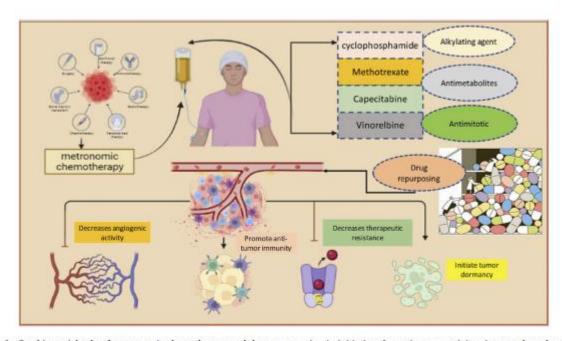
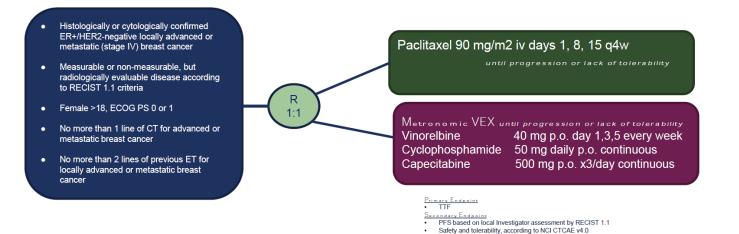
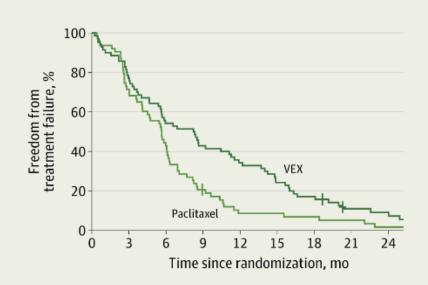



Fig. 1. Combinatorial role of metronomic chemotherapy and drug repurposing in initiating the anti-tumor activity via several mechanisms.

METEORA-II trial (IBCSG 54-16)

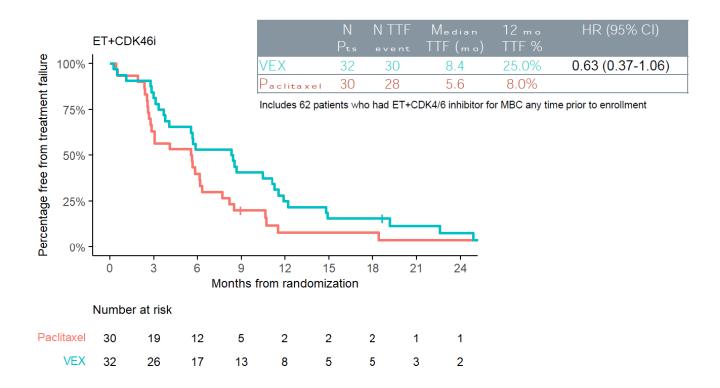


Disease control, based on RECIST 1.1 criteria

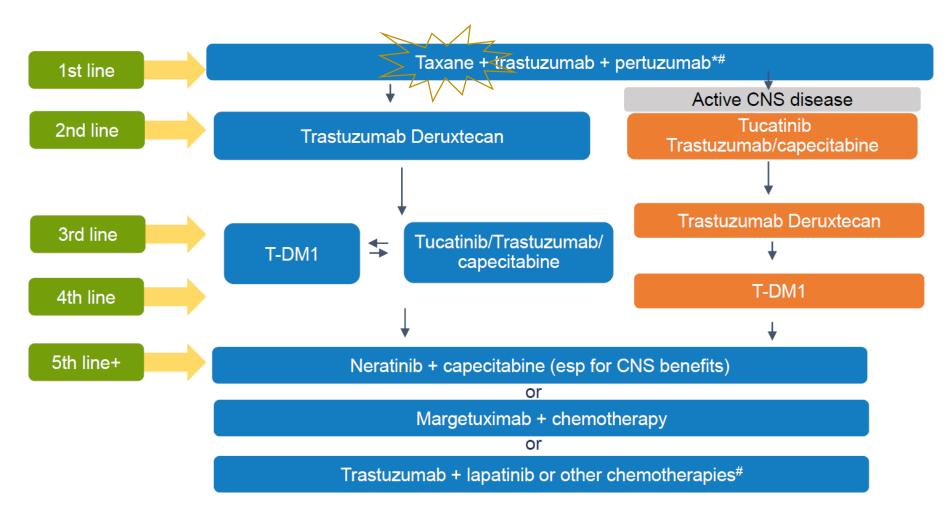
Overall survival (OS)

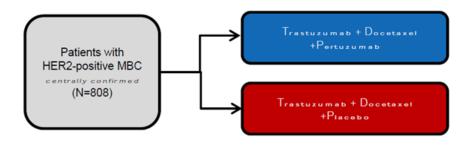
FINDINGS

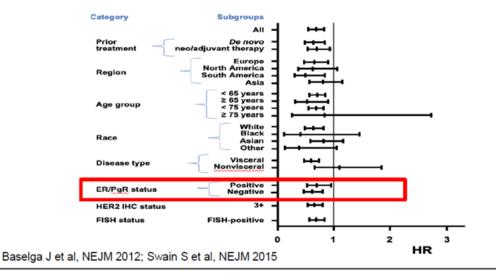
TTF was significantly longer for the VEX group than the paclitaxel group



Median TTF for VEX, 8.3 (95% CI, 5.6-11.1) **Median TTF for paclitaxel**, 5.7 (95% CI, 4.1-6.1) **Hazard ratio**, 0.61 (95% CI, 0.42-0.88); *P*=.008

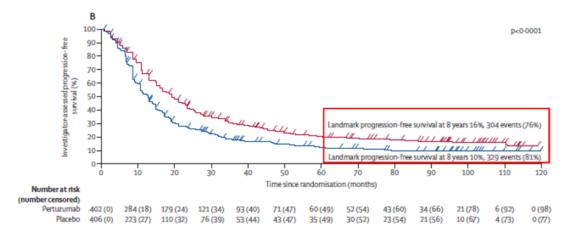

Time to treatment failure (TTF) in the efficacy analysis population: prior ET with CDK4/6 inhibitor subgroup


HER2 POSITIVE MBC


A 2023 Approach to Therapy for Metastatic HER2+ BC:

^{*}AI+TP in select cases and for maintenance in ER+ disease; # endocrine Tx + HER2 therapy at clinically appropriate points for ER+ MBC

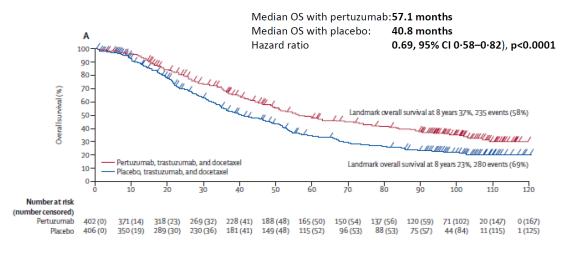
CLEOPATRA TRIAL



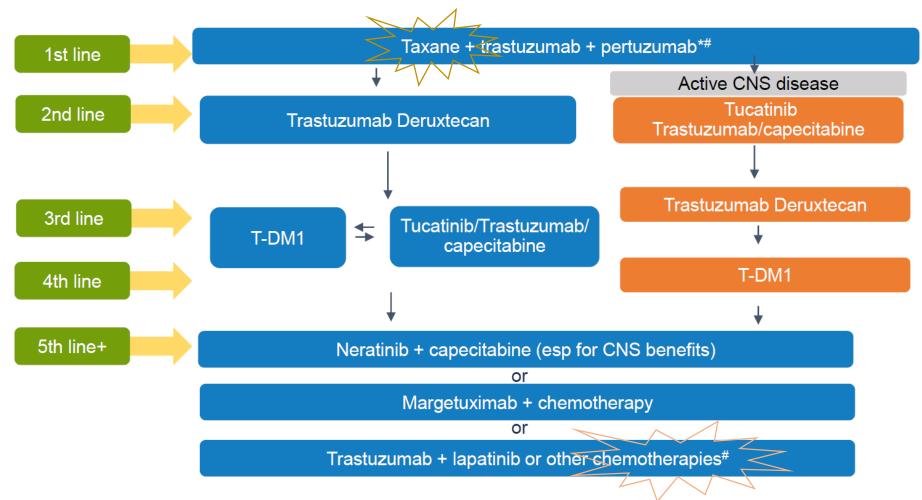
1st line therapy

Pertuzumab + trastuzumab + taxane is first line SOC

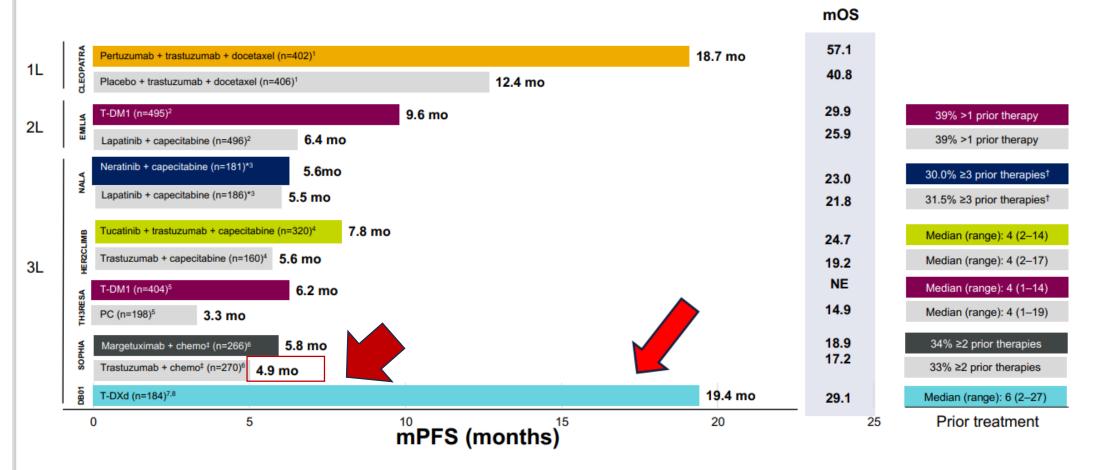
Addition of Pertuzumab Improves PFS


(median follow-up 99.9 months)

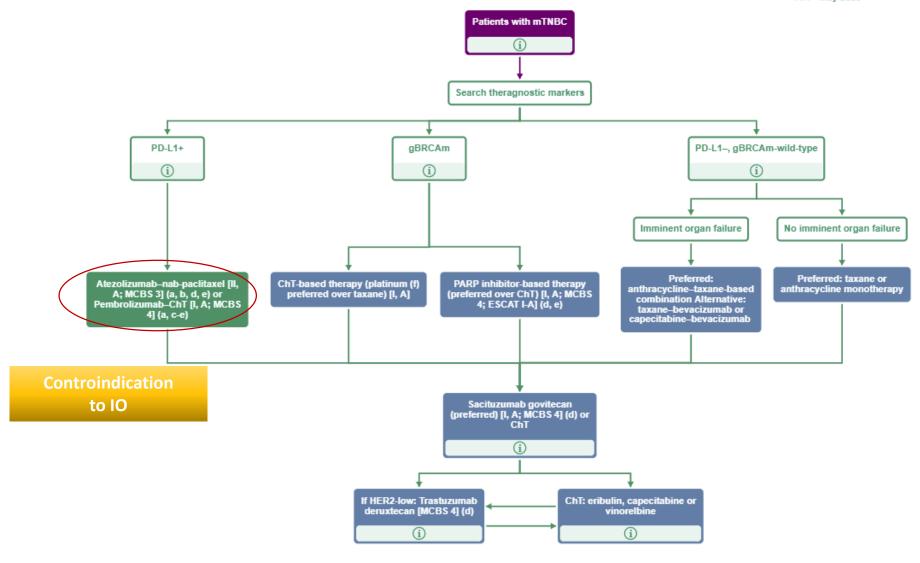
Swain S, et al. Lancet Oncol. 2020;21:519-530


Addition of Pertuzumab Improves Overall Survival

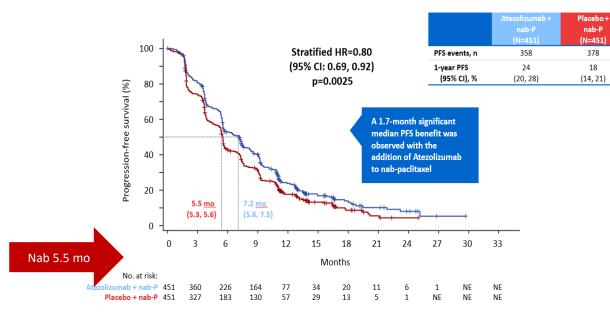
(median follow-up 99.9 months)


Swain S, et al. Lancet Oncol. 2020;21:519-530

A 2023 Approach to Therapy for Metastatic HER2+ BC:

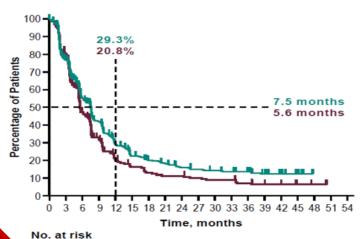

^{*}AI+TP in select cases and for maintenance in ER+ disease; # endocrine Tx + HER2 therapy at clinically appropriate points for ER+ MBC

New 3L Therapies for HER2+ MBC: Cross-Trial Comparisons

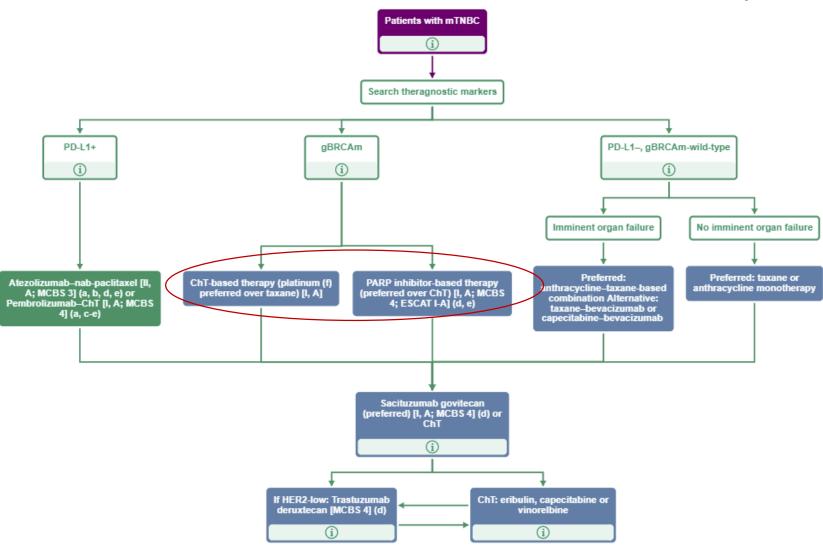

Swain S, et al. Presented at ASCO, 31–4 June 2019, Chicago US. Abstract #1020; Diéras V, et al. Lancet Oncol. 2017;18(6):732–742; Saura C, et al. J Clin Oncol. 2020;38:3138–3149; Murthy RK, et al. N Engl J Med. 2020;382(7):597–609; Krop IE, et al. Lancet Oncol. 2014;15(7)689–699; Rugo HS, et al. Presented at ASCO 2019. Abstract 1000; Saura C et al. Presented at ESMO Congress 2021.

TN MBC

First line


IMPASSION 130

Keynote 355


ITT

	n/N	Events	HR (95% CI)	
Pembro + Chemo	406/566	71.7%	0.82 (0.70-0.98)	
Placebo + Chemo	217/281	77.2%	(0.70-0.98)	

Chemo 5.6 mo

566 408 260 183 116 84 70 63 51 47 44 41 35 26 17 6 0 0 0 281 214 108 68 39 29 23 20 20 17 15 15 11 8 7 4 2 0 0

TNT: Carboplatin vs Docetaxel First-Line Metastatic TNBC

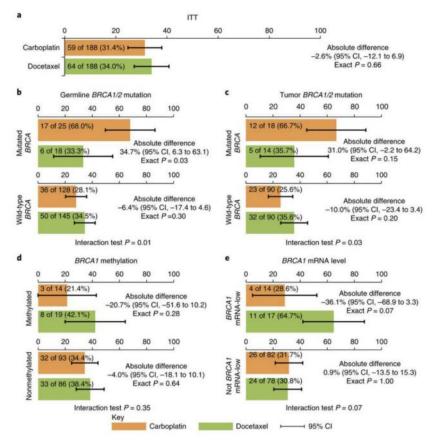
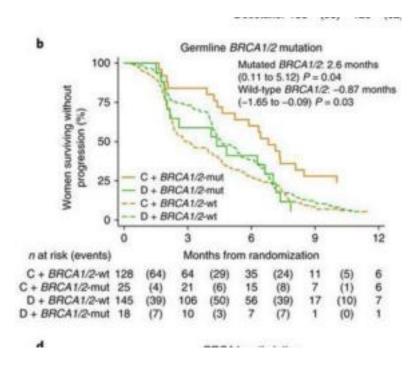
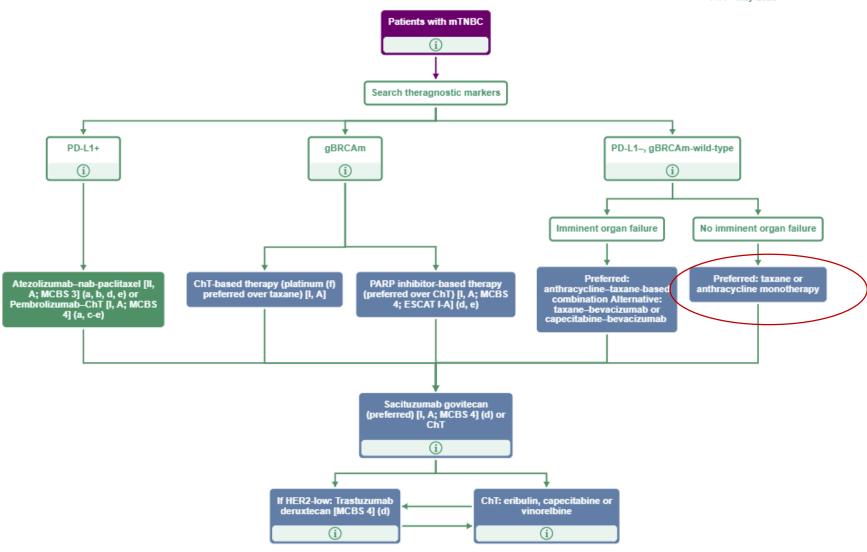
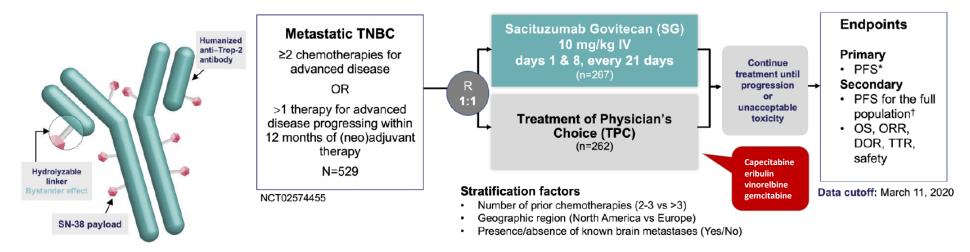




Figure 2. Response rates (overall and BRCA subgroups)

Absolute differences between treatment groups within biomarker subgroups are presented; p-values for the differences are calculated using a 2-sided Fisher's exact test. P-values for interactions are based on a logistic regression model of response with terms for biomarker status, treatment group and interaction.

Carboplatin may be considered as a superior treatment option to docetaxel, since median PFS was improved but only by 2.6 months without an OS benefit



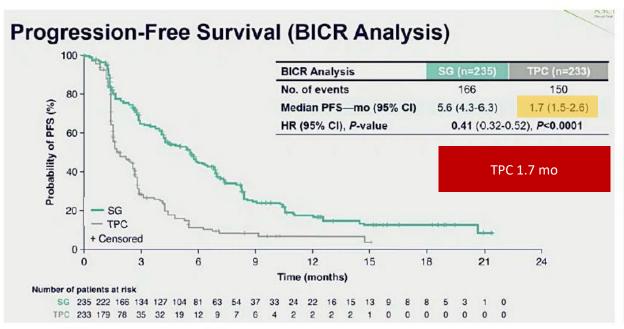
First line

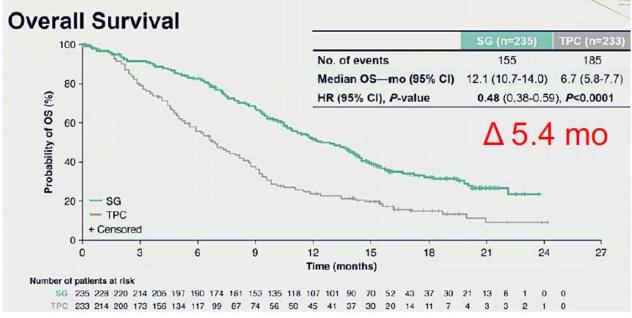
- Several options are possible according to previous treatment exposure in the EBC setting, DFI and disease presentation
- Taxane monotherapy is the most frequent option.
- Anthracyclines: Is a good option?
 - •In case of no prior exposure or if rechallenge is possible.
 - Pegylated doxorubicin (PLD) and nonpegylated doxorubicin (NPLD)?
- Single-agent versus combination ChT?
 - Cochrane review combination ChT was associated with a longer OS(HR 0.88; 95% CI 0.83-0.94; P < 0.001), the clinical benefit was modest and at the cost of increased toxicity

Second and beyond line

Sacituzumab Govitecan: an anti-Trop2 antibody-drug conjugate ASCENT Phase 3 trial in pretreated advanced TNBC

ASCENT was halted early due to compelling evidence of efficacy per unanimous DSMC recommendation


^{*}PFS measured by an independent centralized and blinded radiologists in patients without brain metastases †The full population includes all randomized patients (with and without brain metastases).

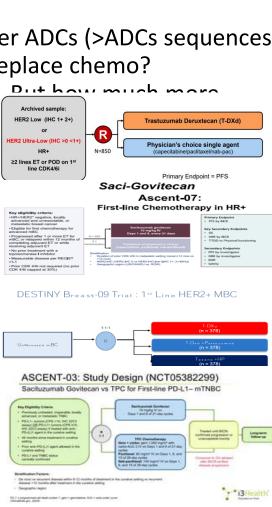

Demographics and Patient Characteristics

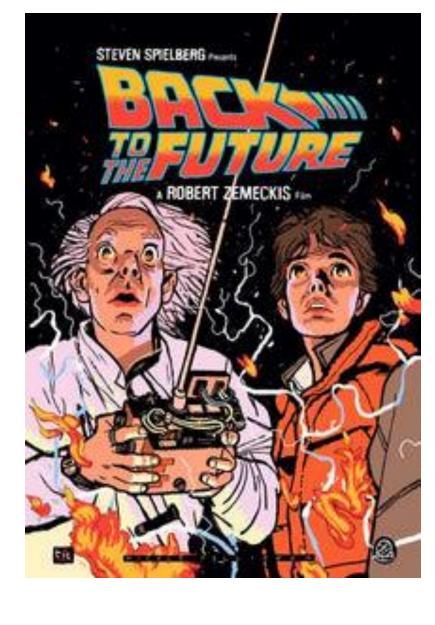
	SG (n=235)	TPC (n=233)
Female—no. (%)	233 (99)	233 (100)
Median age—yr (range)	54 (29-82)	53 (27-81)
Race or ethnic group—no. (%)		
White	188 (80)	181 (78)
Black	28 (12)	28 (12)
Asian	9 (4)	9 (4)
Other or not specified	10 (4)	15 (6)
ECOG PS—no. (%)		
0	108 (46)	98 (42)
1	127 (54)	135 (58)
BRCA 1/2 mutational status—no. (%)		
Positive	16 (7)	18 (8)
Negative	133 (57)	125 (54)
Unknown	86 (37)	90 (39)
TNBC at initial diagnosis*		
Yes	165 (70)	157 (67)
No	70 (30)	76 (33)

	SG (n=235)	TPC (n=233)
Previous anticancer regimens† —median no. (range)	4 (2-17)	4 (2-14)
Most common previous chemotherapy—no. (%)		
Taxane [‡]	235 (100)	233 (100)
Anthracycline [§]	191 (81)	193 (83)
Cyclophosphamide	192 (82)	192 (82)
Carboplatin	147 (63)	160 (69)
Capecitabine	147 (63)	159 (68)
Previous PARP inhibitor—no. (%)	17 (7)	18 (8)
Previous use of checkpoint inhibitors—no. (%)	67 (29)	60 (26)
Most common sites of disease ^{II} —no. (%)		
Lung only	108 (46)	97 (42)
Liver	98 (42)	101 (43)
Bone	48 (20)	55 (24)

ASCENT (Phase III): Sacituzumab Govitecan (SG) vs Treatment of Physician's Choice (TPC) in pretreated mTNBC (N=529) – PFS and OS in BM-Neg Patients

TRAEs (All Grade, >20%; Grade 3/4, >5% of Patients)


	TRAE*	SG (n=258)			TPC (n=224)		
		All grade %	Grade 3, %	Grade 4, %	All grade, %	Grade 3, %	Grade 4, %
Hematologic	Neutropenia*	63	46	17	43	27	13
	Anemia ^t	34	8	0	24	5	0
	Leukopenia§	16	10	1	11	5	1
	Febrile neutropenia	6	5	1	2	2	<1
Gastrointestinal	Diarrhea	59	10	0	12	<1	0
	Nausea	57	2	<1	26	<1	0
	Vomiting	29	1	<1	10	<1	0
Other	Fatigue	45	3	0	30	5	0
	Alopecia	46	0	0	16	0	0


SG was well tolerated with manageable safety profile

- AE leading to treatment discontinuation 4.7%
- · No severe cardiotoxicity
- No grade >2 neuropathy
- No grade >3 interstitial lung disease

Conclusions

- Chemo: has it a role in MBC strategy? Yes....
- But
 - No evidence regarding its efficacy after ADCs (>ADCs sequences)
 - Will new ADCs and target therapies replace chemo?
 - ADCs are clearly winning in efficacy tolerable are they?
 - First line: replacement by ADCs?
 - in HR+/HER2 low (Destiny 06)
 - in HR+/HER2 neg (Ascent 07)
 - in HER2 positive (Destiny 09)
 - In TN (ASCENT 03)

