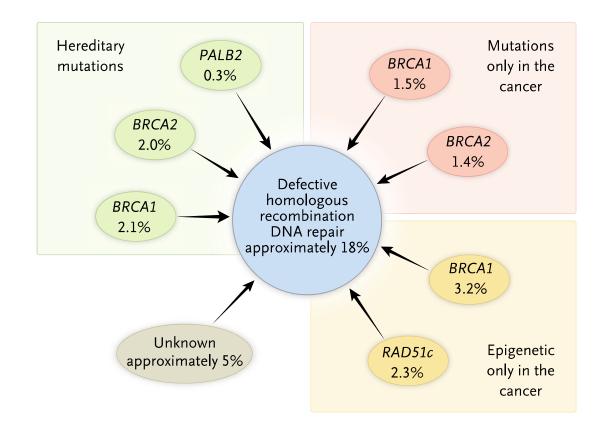
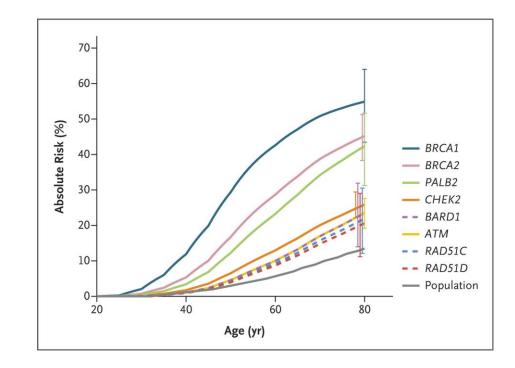
INIBITORI DI PARP NELLA TERAPIA ADIUVANTE DEL CARCINOMA MAMMARIO

Antonio Marra, *MD MSc* Early Drug Development for Innovative Therapies European Institute of Oncology IRCCS Milan, italy


DISCLOSURES

- Honoraria as a consultant, advisor or speaker: Roche and Menarini/Stemline.
- Travel and accommodation support: AstraZeneca.
- Grant/Funding: ESMO José Baselga Fellowship for Clinician Scientists supported by AstraZeneca


OUTLINE

- Homologous Recombination Deficiency in Breast Cancer
- PARP Inhibitors in Early Breast Cancer
- Current Dilemmas
- Future Perspectives

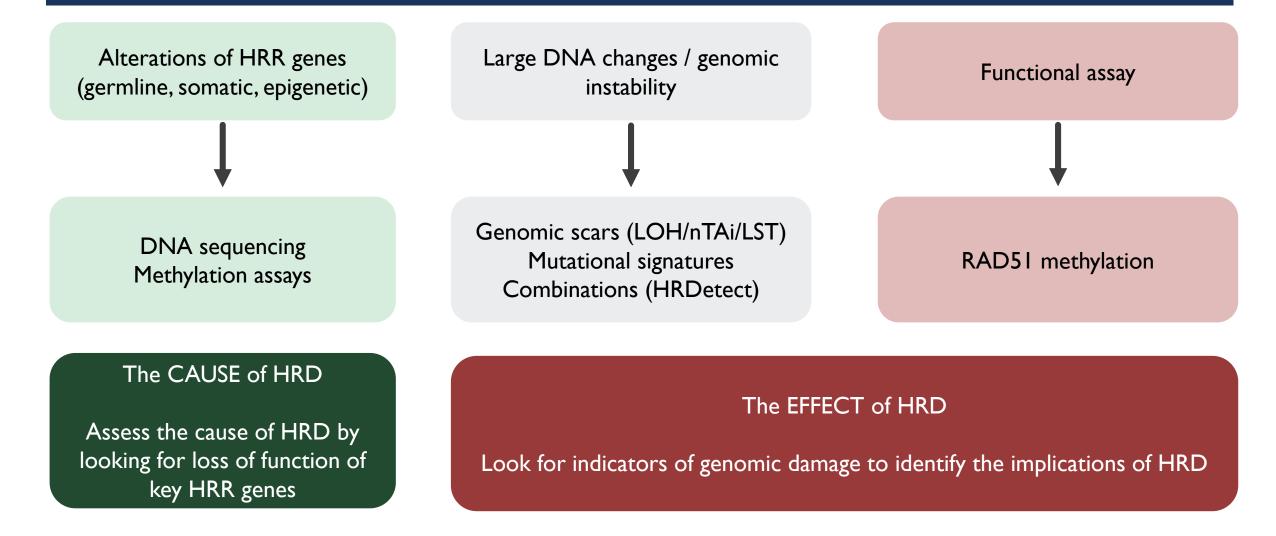
HOMOLOGOUS RECOMBINATION DEFICIENCY IN BREAST CANCER

Absolute risk of breast cancer in carriers of pathogenic/likely pathogenic variants of putative cancer susceptibility genes

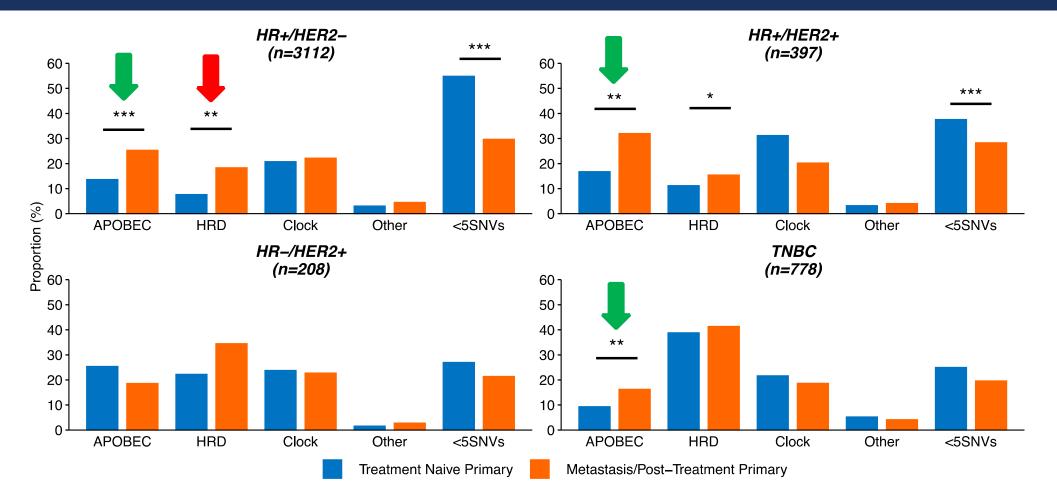
Turner, NEJM 2017; Breast Cancer Association Consortium, NEJM 2021

HOMOLOGOUS RECOMBINATION DEFICIENCY IN BREAST CANCER

BRCA1 and BRCA2 germline mutations vary according to subtype

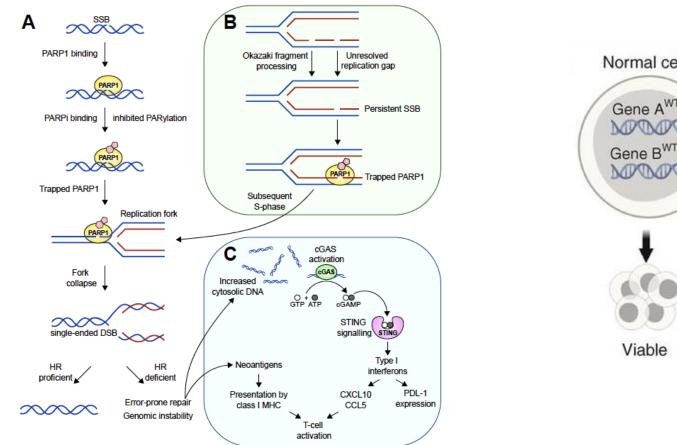

BRCAI

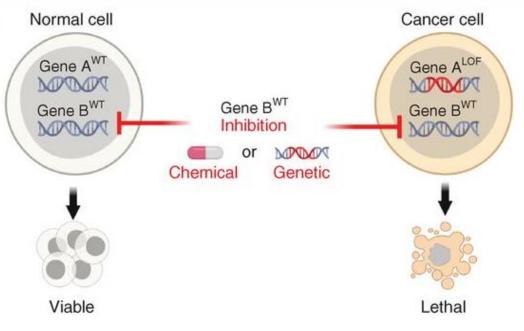
- ER-/PR-/HER2- phenotype (85%)
- Grade 3
- Pushing borders
- Brisk lymphocytic infiltrate
- Up to 14% of consecutive TNBCs


BRCA2

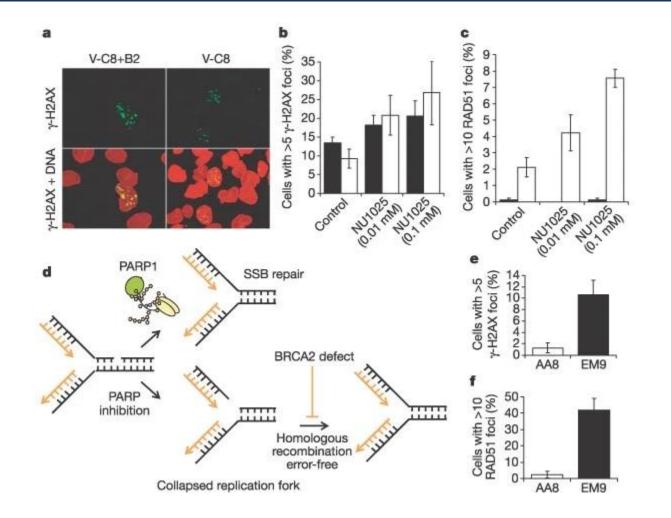
- ER+/HER2- phenotype (Luminal B 75%)
- Grade 3
- Pushing borders
- 5%-8% of Luminal cancers

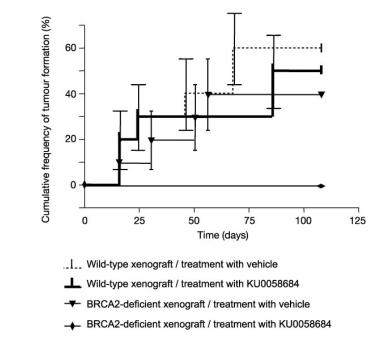
HOW TO EVALUATE HOMOLOGOUS RECOMBINATION DEFICIENCY IN BREAST CANCER




HRD TENDS TO BE HIGHER IN METASTATIC HR+/HER2-, WHILE IT IS STABLE IN TRIPLE-NEGATIVE TUMORS

Marra A, et al. ESMO 2022; manuscript under revision

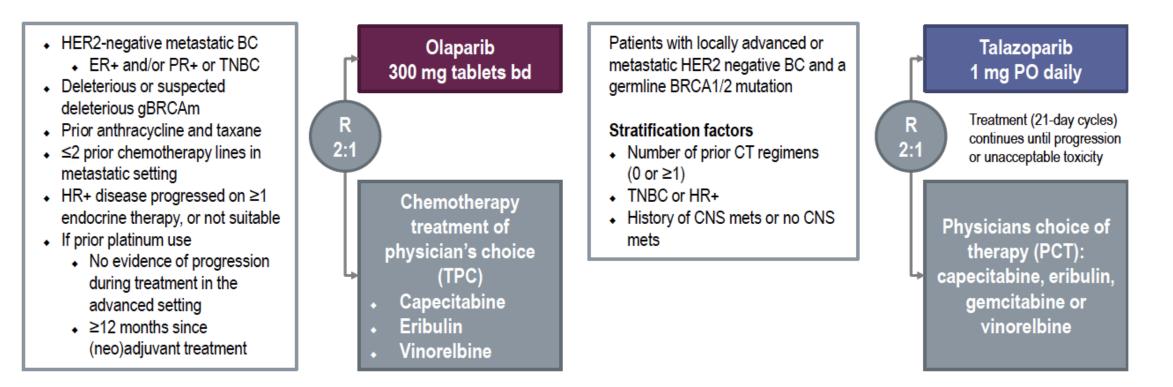

PARP INHIBITORS EXPLOIT "SYNTHETIC LETHALITY" TO TARGET BRCA-DEFICIENT TUMORS



Setton et al. Cancer Discov. 2021; Wicks et al. Open Biol. 2022

BRCA2 DEFICIENT CELLS ARE KILLED BY PARP INHIBITORS

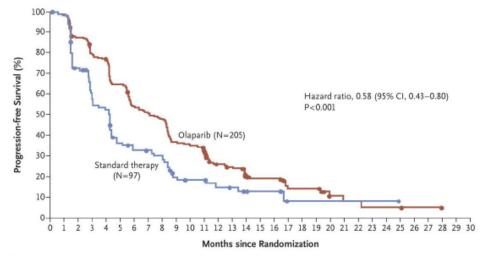
PARPi selectively blocks the growth of BRCA2-deficient tumors



Bryant et al. Nature 2005; Farmer et al. Nature 2005

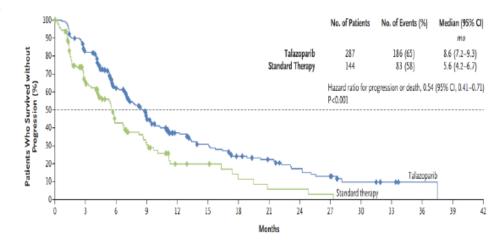
PIVOTAL PHASE III TRIALS TESTING PARP INHIBITION IN ADVANCED BREAST CANCER

OLYMPIAD


EMBRACA

BOTH OLAPARIB AND TALAZOPARIB IMPROVES PFS IN GERMLINE BRCA1/2-MUT ADVANCED BREAST CANCER

OLYMPIAD



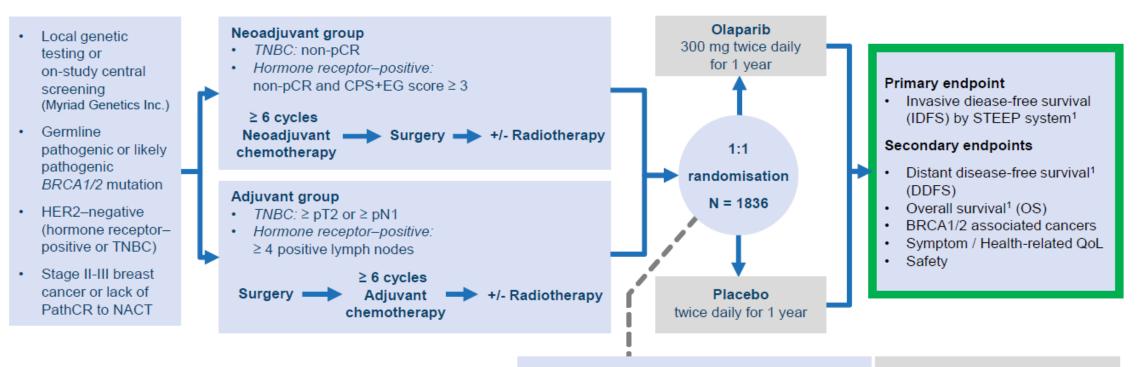
 No. at Risk
 Olaparib
 205201177159154129107100 94 73 69 61 40 36 23 21 21 11 11 11 4 3 3 2 2 1 1 1 1 0
 3 2 2 1 1 1 1 0

 Standard therapy
 97 88 63 46 44 29 25 24 21 13 11 11 8 7 4 4 4 1 1 1 1 1 1 1 1 1 1 0 0 0 0
 0
 0

Median PFS **7.0 vs 4.8 months** HR 0.58, 95% CI: 0.43, 0-80; P<0.001 TNBC: HR 0.43, 95% CI: 0.29, 0.63 44% TN; A/T pretreated; 62% prior CT for MBC; TN: non-platinum resistant

EMBRACA

No. at Risk (events/cumulative events)


 Talazopanib
 287 (0)(0)
 229 (50)(50)
 148 (53)(103)
 91 (34)(137)
 55 (17)(154)
 42 (9)(163)
 29 (9)(172)
 23 (2)(174)
 16 (5)(179)
 12 (4/183)
 5 (2)(185)
 3 (0)(185)
 0 (1)(185)
 0 (1)(185)
 0 (1)(185)
 0 (1)(185)
 0 (1)(185)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)
 0 (0)(183)

Median PFS 8.6 vs 5.6 months HR 0.54, 95% CI: 0.41.0, 71; P<0.001 TNBC: HR 0.60, 95% CI: 0.41, 0.87

Robson, NEJM 2017; Litton, NEJM 2018

OLYMPIA TRIAL:

MOVING PARP INHIBITORS TO EARLY BREAST CANCER

Stratification factors

- Hormone receptor–positive vs. TNBC
- Neoadjuvant vs. adjuvant
- Prior platinum-based chemotherapy (yes vs. no)

Concurrent adjuvant therapy

- Endocrine therapy
- Bisphosphonates
- No 2nd adjuvant chemotherapy

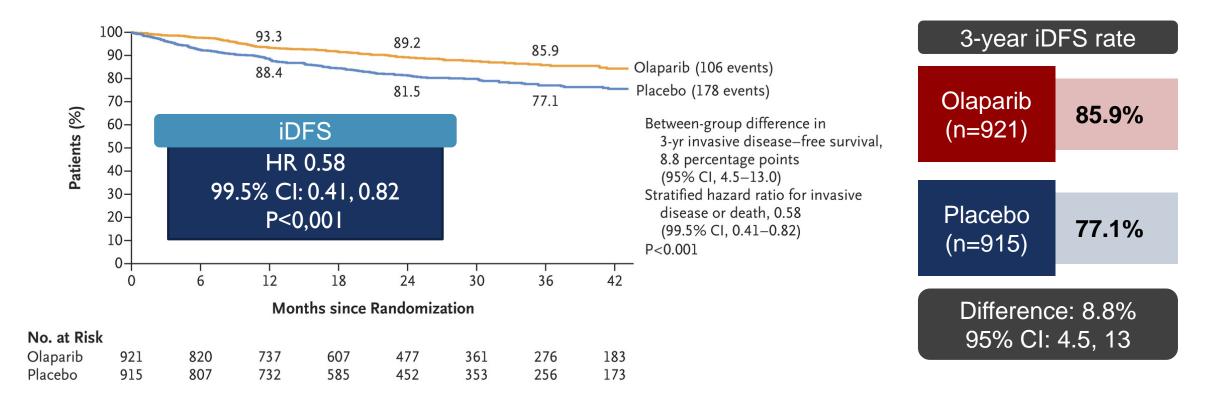
Hormone receptor-positive defined as ER and/or PgR positive (IHC staining ≥ 1%) Triple negative defined as ER and PgR negative (IHC staining < 1%) ¹Hudis CA, J Clin Oncol 2007

OLYMPIA: BASELINE CHARACTERISTICS

Characteristic	Olaparib (n = 921)	Placebo (n = 915)
Median age, yr (IQR)	42 (36-49)	43 (36-50)
gBRCA mutation(s),* n (%) BRCA1 BRCA2 BRCA1 and BRCA2	657 (71.3) 261 (28.3) 2 (0.2)	670 (73.2) 239 (26.1) 5 (0.5)
 Prior neo(adjuvant) CT,⁺ n (%) Adjuvant Neoadjuvant Anthracycline + taxane regimen Anthracycline, no taxane regimen Taxane, no anthracycline regimen <6 cycles (neo)adjuvant CT Platinum-based (neo)adjuvant CT 	461 (50.1) 460 (49.9) 871 (94.6) 7 (0.8) 43 (4.7) 7 (0.8) 247 (26.8)	455 (49.7) 460 (50.3) 849 (92.8) 13 (1.4) 52 (5.7) 15 (1.6) 239 (26.1)
Menopausal status (women only [‡]), n (%) Premenopausal Postmenopausal	n = 919 572 (62.2) 347 (37.8)	n = 911 553 (60.7) 358 (39.3)

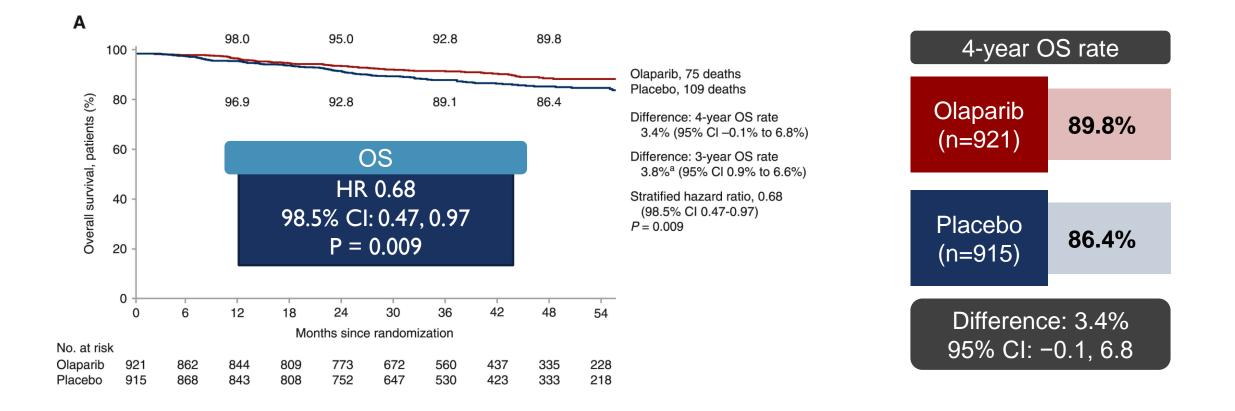
*Data missing for n = 1 in each arm. †Regimen not reported in n = 1 (placebo arm). ‡Trial enrolled 6 men (olaparib, n = 2; placebo, n = 4).

Characteristic	Olaparib (n = 921)	Placebo (n = 915)
HR+/HER2-, n (%)	168 (18.2)	157 (17.2)
TNBC, n (%)	751 (81.5)	758 (82.8)
Concurrent ET (HR+ only), n/N (%)	146/168 (86.9)	142/157 (90.4)
 Primary BC surgery, n (%) Mastectomy Conservative surgery only Missing 	698 (75.8) 223 (24.2) 0	673 (73.6) 240 (26.2) 2 (0.2)


- Among those treated with neoadjuvant CT only, most common CPS + EG score was 3/4 in HR+/HER2- subgroup (18.5% pbo, 19.1% olap); in TNBC subgroup, ≤2 (31.3% pbo, 32.8% olap) and 3/4 (42.8% pbo, 38.8% olap)
- Among those treated with adjuvant CT only, most common pathologic AJCC stages were IIA (54.9% pbo, 57.3% olap) and IIB (16.5% pbo, 15.2% olap)

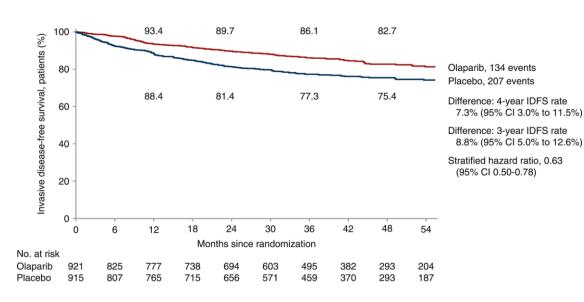
COMMENTS ON THE PATIENT POPULATION

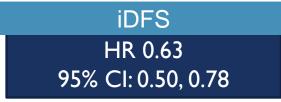
- Very young (median 42-43, 25% > 50)
- 72.3% gBRCA1 mutated
- 82.2% TNBC, no HER2+ (by design)
- 74.7% treated with mastectomy (46.5% bilateral)
- Risk-reducing salpingo-oophorectomy in ~60%
- CPS+EG score unfamiliar to many

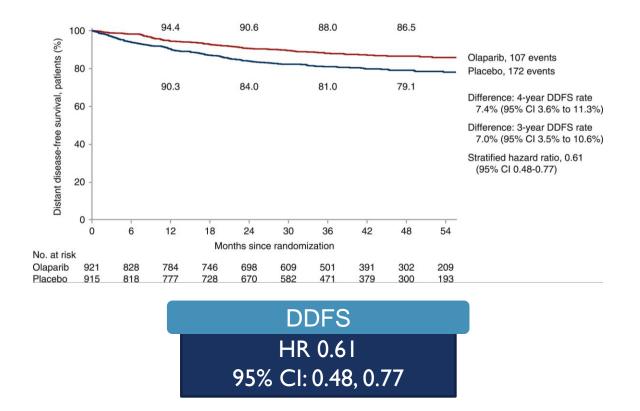

(https://www3.mdanderson.org/app/medcalc/index.cfm?pagename=bcnt)

OLYMPIA: FIRST INTERIM ANALYSIS FOR IDFS

2022 Global approvals as post chemotherapy adjuvant therapy in "high risk" HER2-negative gBRCAmut breast cancer regardless of ER status


OLYMPIA: PLANNED EVENT DRIVEN OVERALL SURVIVAL INTERIM ANALYSIS (2022)




OLYMPIA: UPDATED IDFS AND DDFS

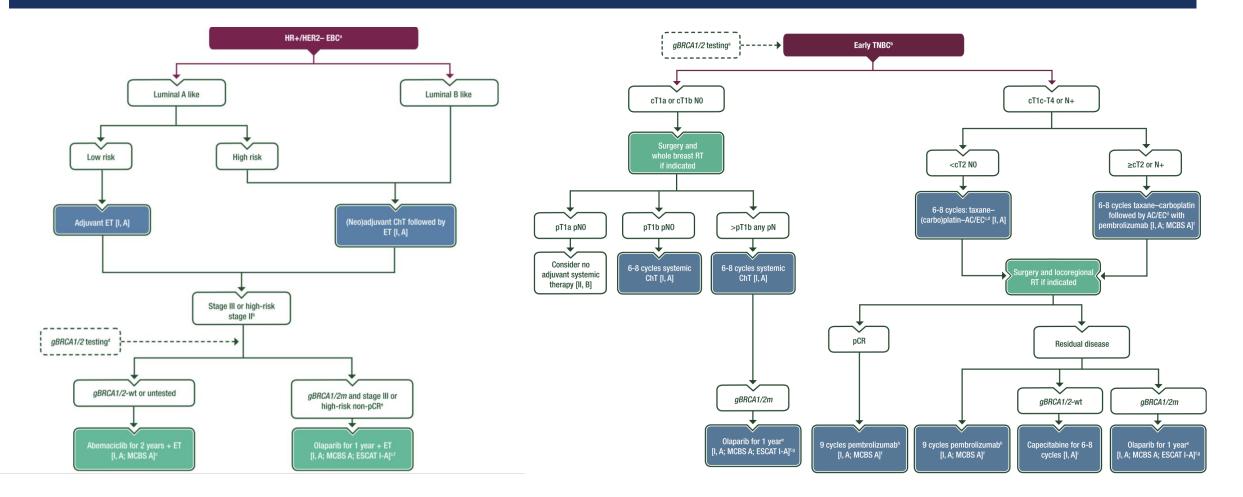
Updated iDFS

OLYMPIA: SUBGROUP ANALYSIS OF IDFS

Subgroup	Olaparib No. of patie	Placebo ents with an	Stratified hazard ratio for invasive disease-free survival (95% CI)	P value for heterogeneity
i	invasive diseas	e event/total no.		
All patients Prior chemo	134 / 921	207 / 915	0.628 (0.504, 0.779)	NA 0.977
Adjuvant Neoadjuvant Prior platinum	46 / 461 88 / 460	75 / 455 132 / 460	0.618 (0.425, 0.888) 0.622 (0.473, 0.813)	0.197
Yes No	42 / 247 92 / 674	51 / 238 156 / 677	0.791 (0.523, 1.187) 0.575 (0.443, 0.742)	0.137
HR status HR+/HER2-	25 / 168	34 / 157	0.680 (0.402, 1.134)	0.754
TNBC BRCA BRCA1	109 / 751 83 / 579	173 / 758 149 / 588	0.620 (0.487, 0.787)	0.615
BRCA1 BRCA2 BRCA1/2 both	34 / 235 0 / 2	44 / 216	0.533 (0.406, 0.695) 0.693 (0.440, 1.082) NC	
			25 0.50 0.75 1.00 1.25	
			Favours olaparib Favours placebo	

OLYMPIA: TREATMENT-RELATED ADVERSE EVENTS AND QOL

AE in >40% of	Olaparib (n = 911)	Placebo (n = 904)		
AE in ≥10% of Patients, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Nausea	518 (56.9)	7 (0.8)	211 (23.3)	0	
Fatigue	365 (40.1)	16 (1.8)	245 (27.1)	4 (0.4)	
Anemia	214 (23.5)	79 (8.7)	35 (3.9)	3 (0.3)	
Vomiting	206 (22.6)	6 (0.7)	74 (8.2)	0	
Headache	180 (19.8)	2 (0.2)	152 (16.8)	1 (0.1)	
Diarrhea	160 (17.6)	3 (0.3)	124 (13.7)	3 (0.3)	
Decreased neutrophil count	146 (16.0)	44 (4.8)	59 (6.5)	7 (0.8)	
Decreased WBC count	143 (15.7)	27 (3.0)	52 (5.8)	3 (0.3)	
Decreased appetite	119 (13.1)	2 (0.2)	53 (5.9)	0	
Dysgeusia	107 (11.7)	0	38 (4.2)	0	
Dizziness	104 (11.4)	1 (0.1)	67 (7.4)	1 (0.1)	
Arthralgia	84 (9.2)	2 (0.2)	107 (11.8)	2 (0.2)	


- In the olaparib arm, anemia was the most frequent AE at grade ≥3 in >1% patients
 - Transfusions: olaparib, 5.8%; placebo, 0.9%
- Median percentage of intended dose received: olaparib, 94.8%; placebo, 98.9%
- For the olaparib vs placebo arms:
 - Dose reductions: 25.0% vs 5.2%
 - Discontinuations due to AEs: 9.9% vs 4.2% (with olaparib, most commonly due to nausea, 2.0%; anemia, 1.8%; fatigue, 1.3%; decreased neutrophil count, 1.0%)
- No declines or clinically significant differences observed between arms in global health quality during tx

OLYMPIA: TREATMENT-RELATED ADVERSE EVENTS AND QOL

Safety Outcome, n (%)	Olaparib (n = 911)	Placebo (n = 904)
Any AE	835 (91.7)	753 (83.3)
Serious AE	79 (8.7)	76 (8.4)
AE of special interest MDS/AML Pneumonitis New primary malignancy	30 (3.3) 2 (0.2) 9 (1.0) 19 (2.1)	46 (5.1) 3 (0.3) 11 (1.2) 32 (3.5)
Grade ≥3 AE	221 (24.3)	102 (11.3)
Grade 4 AE	17 (1.9)	4 (0.4)
AE leading to permanent discontinuation	90 (9.9)	38 (4.2)

AEs leading to death: olaparib, n = 1 (cardiac arrest); placebo, n = 2 (AML, ovarian cancer)

ADJUVANT OLAPARIB IS NOW APPROVED (LEVEL IA) FOR BOTH HR+/HER2- AND TNBC

Loibl, et al. Ann Oncol. 2024

PRACTICAL CONSIDERATIONS

- Should all women with breast cancer now be tested at diagnosis for germline BRCA1/2 alterations?
- 2. Overlapping indications in the adjuvant setting
 - a) Olaparib and pembrolizumb: TNBC with residual after neoadjuvant chemo-immunotherapy
 - b) Olaparib and capecitabine: TNBC with residual after neoadjuvant chemotherapy
 - c) Olaparib and abemaciclib: High-risk early stage or locally advanced node-positive HR+/HER2- breast cancer

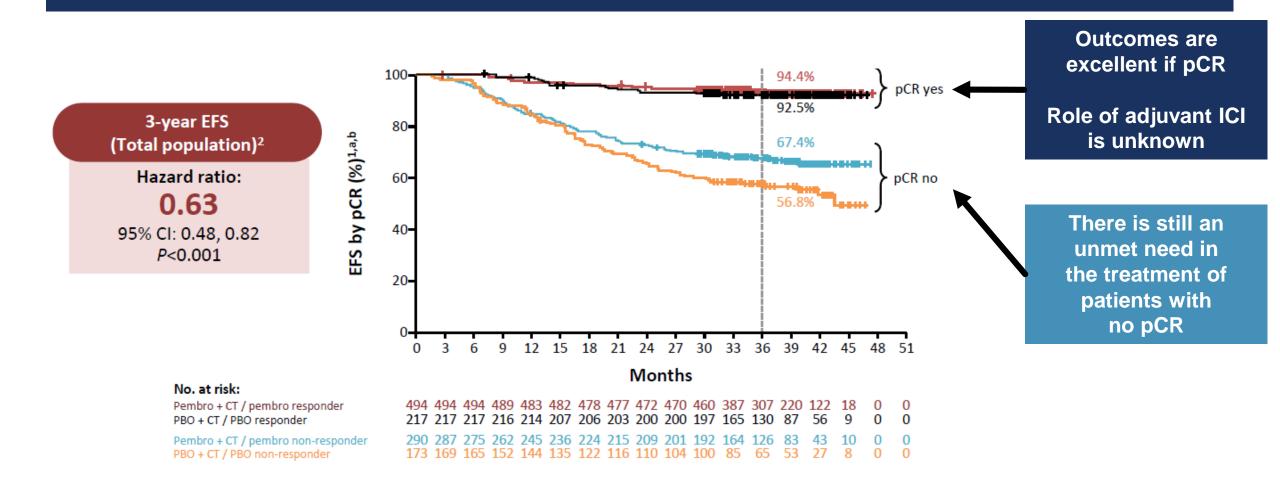
Q1. SHOULD ALL WOMEN WITH BREAST CANCER NOW BE TESTED AT DIAGNOSIS FOR BRCA1/2 ALTERATIONS?

Check for upda

ASCO Special Articles

Germline Testing in Patients With Breast Cancer: ASCO–Society of Surgical Oncology Guideline

Isabelle Bedrosian, MD¹ (); Mark R. Somerfield, PhD² (); Maria Isabel Achatz, MD, PhD³; Judy C. Boughey, MD⁴ (); Giuseppe Curigliano, MD, PhD^{5,6} (); Sue Friedman, DVM⁷; Wendy K. Kohlmann, MS⁴ (); Allison W. Kurian, MD, MSc⁶ (); Christine Laronga, MD¹⁶; Filipa Lynce, MD¹¹ (); Barbara S. Norquist, MD¹² (); Jennifer K. Plichta, MD, MS¹³ (); Patricia Rodriguez, MD¹⁴ (); Payal D. Shah, MD¹⁵ (); Marc Tischkowitz, MD, PhD¹⁶ (); Marie Wood, MD¹⁷; Siddhartha Yadav, MD⁴ (0); Katherine Yao, MD¹⁸; and Mark E. Robson, MD¹⁹ ()

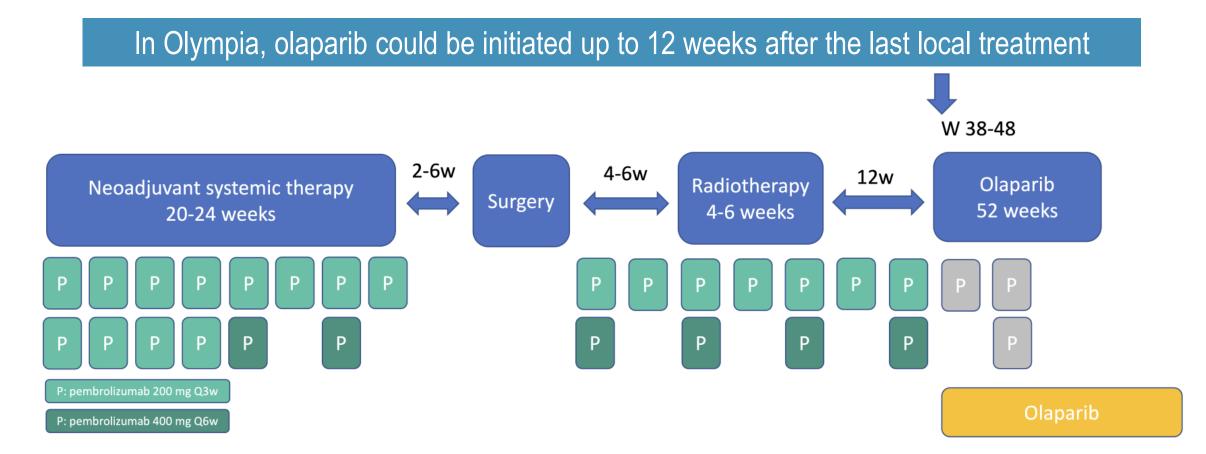

SPECIAL ARTICLE

Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up $\stackrel{\rm low}{\sim}$

S. Loibl^{1,2}, F. André³, T. Bachelot⁴, C. H. Barrios⁵, J. Bergh⁶, H. J. Burstein⁷, M. J. Cardoso^{8,9}, L. A. Carey¹⁰, S. Dawood¹¹, L. Del Mastro^{12,13}, C. Denkert¹⁴, E. M. Fallenberg¹⁵, P. A. Francis¹⁶, H. Gamal-Eldin¹⁷, K. Gelmon¹⁸, C. E. Geyer¹⁹, M. Gnant²⁰, V. Guarneri^{21,22}, S. Gupta²³, S. B. Kim²⁴, D. Krug²⁵, M. Martin²⁶, I. Meattini^{27,28}, M. Morrow²⁹, W. Janni³⁰, S. Paluch-Shimon³¹, A. Partridge⁷, P. Poortmans^{32,33}, L. Puzztai³⁴, M. M. Regan³⁵, J. Sparano³⁶, T. Spanic³⁷, S. Swain³⁸, S. Tjulandin³⁹, M. Toi⁴⁰, D. Trapani⁷, A. Tutt^{41,42}, B. Xu⁴³, G. Curigliano^{44,45} & N. Harbeck⁴⁶, on behalf of the ESMO Guidelines Committee^{*}

BRCA1/2 mutation testing should be offered to all newly diagnosed patients with breast cancer ≤65 years and select patients >65 years based on personal history, family history, ancestry, or eligibility for poly(ADP-ribose) polymerase (PARP) inhibitor therapy Germline testing and subsequent genetic counselling for PVs in BRCA1/2 should be offered to patients who meet the respective national criteria and to those who are candidates for adjuvant olaparib therapy [I, A; ESCAT score: I-A].

Q2A. OLAPARIB VS PEMBROLIZUMAB IN NON-PCR


Q2A. OLAPARIB VS PEMBROLIZUMAB IN NON-PCR

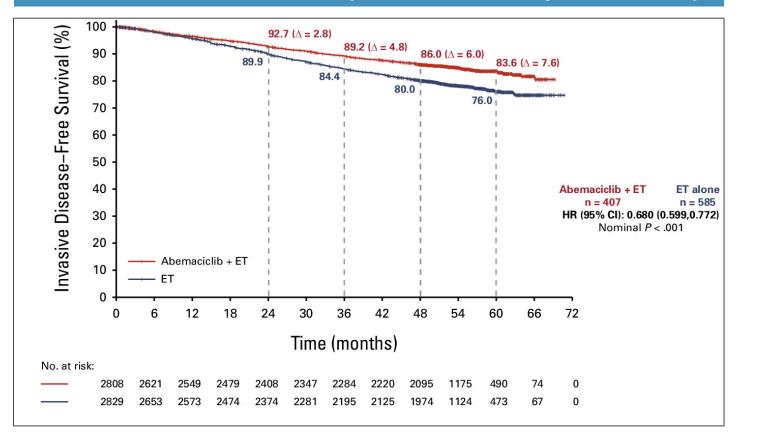
- Continue pembrolizumab and abstain from adjuvant olaparib:
 - 32.6% EFS events at 36 months
- Discontinue pembrolizumab and prioritize olaparib single agent:
 - Optimal duration of pembrolizumab in early TNBC is unknown
 - Trials needed to investigate whether shorter duration is non-inferior

Combine pembrolizumab and olaparib:

- No efficacy and safety data on combination in the early setting. Reassuring safety data reported with PARPi + PD-1/PD-L1 combinations in the advanced setting (MEDIOLA, KEYLYNK-009, DORA trials)
- Off-label, problem with access / reimbursement
- Option for sequential approach?

Q2A. OLAPARIB VS PEMBROLIZUMAB: OPTION FOR SEQUENTIAL APPROACH?

Q2B. OLAPARIB VS CAPECITABINE IN NON-PCR TNBC

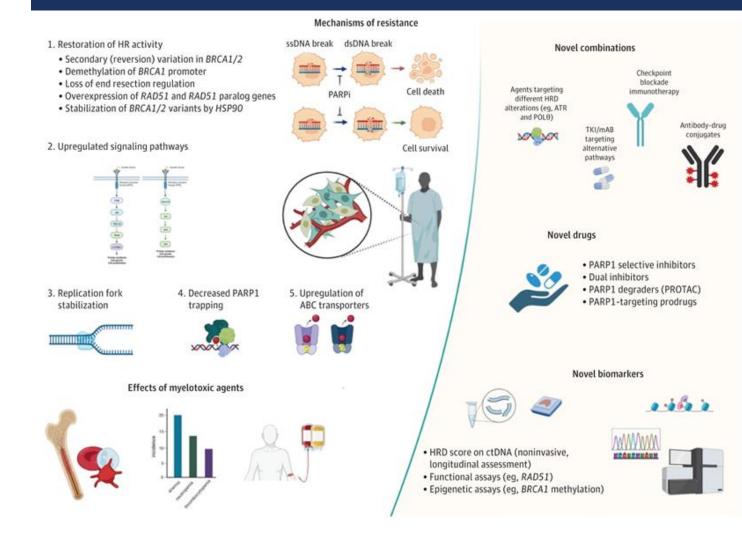

- CREATE-X was not conducted in a setting of either neoadjuvant carboplatin or chemo-immunotherapy
- Not focused in gBRCAm biological subset of TNBC
- PARPi superior to capecitabine as majority chemotherapy comparator in gBRCAm MBC (OLYMPIAD and EMBRACA)
- Combination has no adequate safety data


	N TNBC (Basal)	Capecitabine iDFS	Capecitabine OS	
CREATE-X (v. obs, sig DFS, OS)	286 (N/A)	69.8% 5-year DFS (all)	78.9% 5-year (all)	
GEICAM_CIBOMA (v. obs, NS)	876 (647)	79.6% 5-year DFS (all)	86.2% 5-year (all)	
EA1131 (v. platinum, NSD)	410 (308)	49% 3-year IDFS (basal)	66% 3-year (basal)	

Masuda et al. NEJM 2017; Lluch et al. J Clin Oncol. 2020; Mayer et al. J Clin Oncol. 2021

Q2C. OLAPARIB VS ABEMACICLIB IN HIGH-RISK HR+/HER2-

monarchE: abemaciclibib improves iDFS at 5-year follow up



Q2C. OLAPARIB VS ABEMACICLIB IN HIGH-RISK HR+/HER2-

- Abemaciclib improves iDFS at longer follow up but without overall survival benefit yet seen
- Olaparib improves iDFS with early and sustained separation of survival curves in a mechanism based biomarker selected population of HER2negative breast cancer
- Inadequate safety data to support use of a combination of abemaciclib with olaparib
- Data from metastatic setting suggest BRCA-mediated resistance to CDK4/6i
- Sequential approach?

LIMITATIONS AND FUTURE DIRECTION OF PARP INHIBITORS IN BREAST CANCER

Understand and address resistance to PARPi in high recurrence risk gBRCA1/2 mutation carriers

Reduce toxicity to improve "low risk" and even "prevention" feasibility (PARP1-selective inhibitors)

Investigate potential for use in other forms of HR-deficient breast cancer

Improve biomarkers to detect breast cancer that is HR-deficient

Morganti S, Marra A, et al. JAMA Oncol. 2024

KEY ONGOING STUDIES INVESTIGATING PARP INHIBITORS IN EARLY BREAST CANCER

Registration identifier	Phase	Primary endpoint(s)	Disease(s)	Mutation status	Prior PARPi	N	Class(es)	Interventional cohort drug(s)
NCT05582499	1/11	pCR rate	ВС	N.R.	//	716	PARPi + CDKi	Fluzoparib + Dalpiciclib/Fluzoparib + Chemotherapy
NCT05332561 (COGNITION- GUIDE)	н	iDFS	BC (TNBC cohort)	s/gBRCA1/2, gPALB2	//	240	PARPi	Olaparib
NCT05761470	Ш	pCR rate	HER2- BC	HRD	//	66	Parpi + 10	Fluzoparib + Camrelizumab + Chemotherapy
NCT02849496	Ш	PFS	HER2- BC	BRCA1/2	Not allowed	81	Parpi + 10	Olaparib + Atezolizumab
NCT04481113	I.	MTD	HR+/HER2- BC	N.R.	Not allowed	8	PARPi + CDKi	Niraparib + Abemaciclib
NCT05834582	Ш	pCR rate	TNBC	gBRCA 1/2	Not allowed	60	PARPi	Fluzoparib + Chemotherapy
NCT03911453	I.	PD-L1 expression	TNBC	N.R.	Not allowed	20	PARPi	Rucaparib
NCT05498155	Ш	pCR rate	TNBC	s/gBRCA 1/2	Not allowed	50	Parpi + 10	Olaparib ± Durvalumab
NCT04584255	Ш	pCR rate TILs change	HER2- BC	gBRCA1/2, gPALB2	Not allowed	62	PARPi + IO	Niraparib + Dostarlimab

Abbreviations: N = enrollment; PFS = progression free survival; N.R. = not required; PARPi = adenosine diphosphate polymerase inhibitor; sBRCA = somatic BRCA; gBRCA = germline BRCA; HR = hormone receptor; TNBC = triple negative breast cancer; ADC = antibody-drug conjugate; IO = immunotherapy; HRD = homologous recombination deficiency; pCR = pathological complete response

Morganti S, Marra A, et al. JAMA Oncol. 2024

CONCLUSIONS (...personal...)

- Germline BRCA1 and BRCA2 status is now an important systemic therapy defining-biomarker in early (and advanced) breast cancer → PLEASE TEST YOUR PATIENT!
- Adjuvant olaparib improves iDFS, DDFS and OS in HER2-negative gBRCA early disease
- In TNBC with residual disease: olaparib benefits unknown following KEYNOTE-522 regimen but lack of pCR is associated with substantial risk favors use of olaparib post surgery
- In TNBC with residual disease: OS adjuvant and MBC response and PFS data support choice of olaparib over capecitabine in gBRCAm specific context
- In high risk ER+/HER2- disease: ITT IDFS, DDFS and an OS benefit favour olaparib over abemaciclib but sequencing after 12 months olaparib could be considered