

Progetto <u>CANOA</u> <u>CARCINOMA</u> <u>MAMMARIO:</u> QUALI NOVITA' PER IL 2024?

LA STATALE

Quali test per la decisione terapeutica nel 2024?

"Saper leggere" uno studio clinico per migliorare la pratica clinica

Nicola Fusco

Divisione di Anatomia Patologica IEO Istituto Europeo di Oncologia IRCCS Università degli Studi di Milano

> Verona, 22-23 Marzo 2024 Hotel Leon d'Oro

DISCLOSURES

Commercial Interest	Relationships
MSD, Novartis, AstraZeneca, Diaceutics, Adicet Bio, Sysmex, Roche, Menarini, Gilead, Veracyte Inc, Sakura.	Consulting/advisory role
MSD, Novartis, AstraZeneca, Daiichi Sankyo, GSK, Gilead, Roche, Leica Biosystems, Lilly, Pfizer.	Speaker bureau
Novartis, Reply, Gilead, AstraZeneca, GSK, Pfizer.	Research grants
Roche.	Travel grants

BC BIOMARKERS IN 2024

RISK STRATIFICATION (EARLY BREAST CANCER)

Type of tumour	Method	
Most early breast cancers	BCS is the preferred local treatment option	
Early, clinically node-negative breast cancer	 SLNB is the standard of care for axillary staging If positive SLNB, further axillary surgery is not required for low axillary disease burden, axillary RT is an alternative 	
DCIS	BCS (with a 2 mm margin) followed by WBRT or total mastectomy are acceptable treatment options	
Occult breast cancer	ALND and WBRT are the preferred locoregional management	
• Pathology remains the cornerstone \rightarrow		

Ensuring an accurate diagnosis through pathology evaluation

- Lymph node examination (SLN + clinical) → staging and prognosis
- Identifying genetic factors that may contribute to breast cancer risk → BRCA
- Molecular tests only in alignment with established guidelines.

THE EXPANDED SPECTRUM OF HER2 POSITIVITY

¹Division of Pathology, IEO, European Institute of Oncology IRCGS, Mian, Italy, ²Department of Oncology and Hemato-Oncology, University of Mian, Mian, Italy, ²Division of Early Drug Development for Innovative Thenapy, IEO, European Institute of Oncology, IRCCS, Mian, Italy Expanded spectrum of HER2 positivity

CLASSIFICATION OF BREAST CANCER AND ACCESS TO ANTI-HER2 DRUGS

HOW TO TEST HER2?

SYNOPTIC REPORT FOR HER2 TEST TO ADDRESS THE EVOLVING CLINICAL RATIONALE

Cold ischemia time < 1h fixation 6-72 h Overfixation may lead to false-negative results

HER2 0 challenge:

- distinction between score 0 and score 1+ is now clinically relevant
- intepretation challenges
- heterogeneity
- interobserver reproducibility
- training

Follow 2023 ASCO/CAP updates and 2023 ESMO consensus statements O-

> Interpretation issues can be complicated by spatial and temporal heterogeneity, which is an independent risk factor for decreased DFS, creating diculties in treatment selection

SPECIMEN Date of collection DIAGNOSIS

HER2 testing by immunohistochemistry:

Assay IHC Staining platform

Describe the intensity and pattern of staining: - weak/moderate/intense membrane staining - complete/incomplete

Indicate: - percentage (%) of cells with described pattern and score

RESULT: Positive/Equivocal/Negative (Score #)

Reflex in situ hybridization test: Test type

Number of observers Number of invasive tumor cells counted

Indicate:

- aneusomy,
- signal heterogeneity
- percentage of cells with amplied HER2 signals

Average Number of HER2 Signals per Cell: ## Average Number of CEP17 Signals per Cell: ## RESULT: HER2 / CEP17 Ratio: ### (Group #) - Positive/Negative (dual-probe) OR

Average HER2 copy number - Positive/Negative (single-probe)

 Avoid reporting in DCIS Beware edge artifacts

Discrepancies in the interpretation of IHC HER2 test results may occur due to different assays and platforms, without o proper harmonization

Use of internal and external controls is mandatory for each slide run; There are no normal internal controls.

Interpretation: Score 0, 1+: negative Score 2+: equivocal (requires ISH) Score 3+: positive

Identication of invasive carcinoma:

- A pathologist should identify on H&E slide the area of invasive carcinoma to be evaluated
- ISH analysis must be performed on the
 invasive carcinoma
- DCIS may show gene amplication which should be disregarded

Challenges to be addressed:

- Different antibodies and detection systems
- Different platforms
- Different scoring systems (ASCO/CAP vs Ventana)
- Spatial and temporal heterogeneity

Standardized pathology report for HER2 testing in compliance with 2023 ASCO/CAP updates and 2023 ESMO consensus statements on HER2-low breast cancer

Mariia Ivanova ¹© · Francesca Maria Porta¹⊙ · Marianna D'Ercole¹⊙ · Carlo Pescia¹⊙ · Elham Sajjadi^{1,2}⊙ Giulia Cursano¹⊙ · Elisa De Camilli¹⊙ · Oriana Pala¹⊙ · Giovanni Mazzarol¹⊙ · Konstantinos Venetis¹⊙ · Elena Guerini-Rocco^{1,2}⊙ · Giuseppe Curigliano^{2,3}⊙ · Giuseppe Viale¹⊙ · Nicola Fusco^{1,2}⊙

Received: 20 July 2023 / Revised: 3 September 2023 / Accepted: 13 September 2023 / Published online: 28 September 2023 © The Author(s) 2023

Virchows Archiv (2024) 484:3–14

ESTABLISHED MOLECULAR BIOMARKERS IN BC

- As in early breast cancer, the quantity of ctDNA correlates with poor survival
- serial measurement of ctDNA has the potential to monitor and predict treatment. response.
- mutation status of specific genes
 - •ESR1 (LB++, MT+) Which sample?
 - •**PIK3CA** (PT++, MT++, LB+)
 - •HER2

Which method?

Primary tumor

Metastatic sample

Liquid biopsy

Digtal Droplet PCR

Next-Generation Sequencing

ESR1 TESTING ON LIQUID BIOPSY

- ESR1 mutations occurrence in LBD lead to ET resistance (mainly to AI)
- Rationale: to select patients with HR+/HER2- MBC for Elacestrant treatment

HOW TO TEST ESR1?

SYNOPTIC REPORT FOR ESR1 TEST IN 2024

HOW TO TEST PIK3CA?

	PROS	CONS	
	Cost-effective	High amount of material required	
	Short turnaround time	Affected by low tumor cell content	
	Widely available	Variable reference range	
	High sensitivity	No allele frequency	
RT-PCR	Wide choice of panels	Affected by the pre-analytical phase	

	PROS	CONS
	Higher sequencing depth for increased	Expensive
	sensitivity (down to 1%)	Long turnaround time
	Multi-target panels	Not widely available
	 Low input of nucleic acid needed 	Affected by the pre-analytical phase
Next-Generation	Wide choice of panels	Dedicated personnel required
Sequencing		

LANDSCAPE OF CURRENT PIK3CA MOLECULAR TESTING IN BC-**NATIONWIDE SURVEY (138 CENTERS)**

North-west	52	
Valle d'Aosta	2	
Piemonte	7	
Lombardia	38	
Liguria	5	Y
North-east	15	
Veneto	7	
Friuli Venezia Giulia	1	
Emilia Romagna	7	
Center	18	
Toscana	3	
Umbria	5	
Marche	5	
Lazio	2	
Abruzzo	3	
South and islands	53	
Campania	24	
Puglia	8	
Calabria	8	
Sardegna	1	
Sicilia	12	

NGS

n=30 (42%)

Pepe et al. Pharmacogenomics 2024

Landscape of current PIK3CA molecular testing in BC–

FEDERICO II

PIK3CA MUTATIONS IN BREAST CANCERS: TESTING STRATEGIES

Analytical Performance of Next-Generation Sequencing and RT-PCR on Formalin-Fixed Paraffin-Embedded Tumor Tissues for *PIK3CA* Testing in HR+/HER2— Breast Cancer

Konstantinos Venetis ^{1,2,†}, Francesco Pepe ^{3,†}, Elisabetta Munzone ⁴, Elham Sajjadi ^{1,2}, Gianluca Russo ³, Pasquale Pisapia ³, Mariia Ivanova ¹, Giuseppina Bonizzi ¹, Davide Vacirca ¹, Alessandra Rappa ¹, Alberto Ranghiero ¹, Sergio Vincenzo Taormina ¹, Giuseppe Viale ^{1,2}, Giancarlo Troncone ³, Massimo Barberis ¹, Elena Guerini-Rocco ^{1,2}, Umberto Malapelle ^{3,*,‡} and Nicola Fusco ^{1,2,*,‡}

Elham Sajjadi^{1,2}, Konstantinos Venetis^{1,2}, Cristian Scatena³ and Nicola Fusco^{1,2}

LANDSCAPE OF CURRENT PD-L1 MOLECULAR TESTING IN TNBC– NATIONWIDE SURVEY (103 CENTERS)

Mauro G. Mastropasqua^{ina}, Lorenzo Nibid^{100, inc.}, Sandra Orrù¹⁰, Maria Pastena^{inc}, Monica Peresi^{af}, Letizia Perracchio¹⁰S, Angela Santoro¹⁰D, Vania Vezzosi¹¹, Claudia Zambelli¹⁰, Valeria Zuccalà^{14k}, Antonio Rizzo⁸, Leopoldo Costarelli¹⁶, Francesca Pietribiasi¹⁴, Alfredo Santinelli¹⁰, Cristian Scatena¹, Giuseppe Curigliano^{15,c}, Elena Guerini-Rocco^{16,b}, Maurizio Martini¹⁰, Paolo Graziano¹⁰, Isabella Castellano^{19,c}, Giulia d'Amati¹⁶

PD-L1 TEST ANALYTICAL VALIDATION IN mTNBC

- In mTNBC, CPS can be reliably assessed either by 22C3 (which was used in the KEYNOTE studies) or SP263, providing the use of the dedicated platform (i.e. Dako and Ventana).
- CPS and IC are not interchangeable tests in mTNBC
- PD-L1 test in mTNBC is reproducible when assessed by specifically trained pathologists using CE-IVD assays, i.e. 22C3 and SP263 for CPS and SP142 for IC score.

Check for updates

PD-L1 testing in metastatic triple-negative breast cancer: Interobserver and interplatform reproducibility of CE-IVD assays for CPS and IC scores

Mariia Ivanova^{a,1}, Chiara Frascarelli^{a,b,1}, Bruna Cerbelli^{c,1}, Maria Gemma Pignataro^C Angelina Pernazza^c, Konstantinos Venetis^e, Elham Sajjadi^{A,b}, Carmen Criscitiello^{b,d}, Giuseppe Curigliano^{b,d}, Elena Guerini-Rocco^{a,b}, Paolo Graziano^c, Maurizio Martini[†], Giulia d'Amati^{c,2}, Nicola Fusco^{a,b,*,2}

ERLOW BC: HOW TO TEST FOR ER?

Invasive carcinomas with low level (1-10%) of ER expression

2-3% of ER⁺ invasive breast cancers

Clinically challenging

>> Heterogeneous behavior and biology

>> Gene expression and clinical profiles more similar to ERcancers

>> Eligible for HT but limited data on the benefit

Diagnostically challenging

- >> Usually weak/very weak nuclear staining
- >> Pre-analytical issues
- >> Inter-observer reproducibility
- >> An additional comment should be provided in the pathology report

>> <u>Biology</u>

Assessment of estrogen receptor low positive status in breast cancer: Implications for pathologists and oncologists

Nicola Fusco^{1,2}, Moira Ragazzi³, Elham Sajjadi^{1,2}, Konstantinos Venetis^{1,2}, Roberto Piciotti^{1,2}, Stefania Morganti^{2,4}, Giacomo Santanforea⁵, Giuseppe Nicolò Fanelli⁶, Luca Despini7, Marco Invenizzi^{4,8}, Bruna Cerbelli¹⁰, Cristian Scatena^{6,11} and Carmen Criscitiello^{2,4}

WHAT ROLE FOR AI-ASSISTED DIAGNOSIS AND **BIOMARKERS TESTING IN BC?**

PD-L1 (CPS)

PD-L1 (IC)

Histology based

INTEGRATIVE ONCOLOGIC PATHOLOGY FOR THE CLINICAL MANAGEMENT OF TNBC

Balancing between:

- Classic morphology
- Molecular classification(s)
- Computer-assisted diagnostics

For clinical decision-making

LΛ STΛΤΛLE

Research team: Elham Sajjadi Konstantinos Venetis Mariia Ivanova Chiara Frascarelli Giulia Cursano Eltjona Mane

4oncommunity Umberto Malapelle Fabio Pagni Matteo Fassan Carmen Criscitiello Sara Pilotto

Thank youl Digital Biobank team: Giuseppina Bonizzi Maria Capra Cristina Cassi Camilla Rosella Musico Luca Leoni

Division of Pathology Giuseppe Viale Elena Guerini Rocco Giovanni Mazzarol Clementina Di Tonno 19 94 20 24 Oriana Pala Elisa De Camilli **Giuseppe Renne** Mariano Lombardi Fausto Maffini Renato Lobrano Daniela Lepanto Mariacristina Ghioni Benedetta Di Venosa Eleonora Pisa Luca Bottiglieri Valeria Midolo Marianna D'Ercole Francesca M Porta Marta Cruz-Blanco Mariachiara Negrelli

IOX IEO 5x1000 allo IEO

EO

la lotta contro il cancro non si ferma Isabella Castellano Leopoldo Costarelli Giulia d'Amati Francesca Pietribiasi Antonio Rizzo Alfredo Santinelli Cristian Scatena

C.F.0865 casella ricerca

GIPaM/SIAPeC

Nentato realtà grazie al suoi so iende c. nza internazionale che hanno cne modello di etti caltato con finaliti no-profi seto modello di indipendenza di ric instifica edi