







# QUALI INFORMAZIONI DEVE FORNIRE OGGI L'ANATOMO-PATOLOGO AL CLINICO? QUALI SOTTOGRUPPI SONO OGGI IDENTIFICABILI?

### Nicola Fusco

Division of Pathology, IEO, European Institute of Oncology IRCCS

Department of Oncology and Hemato-Oncology, University of Milan, Italy

nicola.fusco@unimi.it | nicola.fusco@ieo.it



# DISCLOSURES

| Commercial Interest                                                                      | Relationships            |
|------------------------------------------------------------------------------------------|--------------------------|
| MSD, Novartis, AstraZeneca, Adicet Bio, Sermonix, Roche, Menarini, Gilead, Veracyte Inc. | Consulting/advisory role |
| MSD, Novartis, AstraZeneca, Daiichi Sankyo, GSK, Gilead, Roche, Leica Biosystems, Lilly  | Speaker bureau           |
| Novartis, Reply                                                                          | Research grants          |
| Roche                                                                                    | Travel grants            |

# NOVEL AND EMERGING BIOMARKERS IN BREAST CANCER

- PD-L1 (CPS/IC)
- HER2-low
- PIK3CA
- ESR1
- g/s/tBRCA
- TROP-2

→ IHC
 → IHC/ISH
 → SEQ
 → SEQ
 → SEQ
 → tbd







HER2 Low, Ultra-low, and Novel Complementary Biomarkers: Expanding the Spectrum of HER2 Positivity in Breast Cancer

Konstantinos Venetis<sup>1,21</sup>, Edoardo Crimini<sup>2,3</sup>, Elham Sajjadi<sup>1,2</sup>, Chiara Corti<sup>2,3</sup>, Elena Guerini-Rocco<sup>1,2</sup>, Giuseppe Vale<sup>1,2</sup>, Giuseppe Curigliano<sup>2,3</sup>, Carmen Crisciliello<sup>2,3</sup>\* and Nicola Fusco<sup>1,2</sup>\*

Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy, <sup>2</sup>Department of Oncology and Hemato-Oncology, Iniversity of Milar, Milan, Italy, <sup>2</sup>Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology, RCCS, Main, Italy.



Elham Sajjadi<sup>1,2</sup>, Konstantinos Venetis<sup>1,2</sup>, Cristian Scatena<sup>3</sup> and Nicola Fusco<sup>1,2</sup>

# PREDICTIVE ROLE OF PD-L1 EXPRESSION: PITFALLS

- Assay variability
  - Different antibodies
  - Different platforms
  - Different scoring systems
- Biological variability
  - Spatial variability
  - Temporal variability
  - Tumor or microenvironment
  - Constitutive vs. inflammation-induced



Marletta S, et al. Atlas of PD-L1 for Pathologists: Indications, Scores, Diagnostic Platforms and Reporting Systems. J Pers Med. 2022

### PD-L1 CPS in mTNBC: A REAL-LIFE ITALIAN PORTRAIT





Advancing the PD-L1 CPS test in metastatic TNBC: Insights from pathologists and findings from a nationwide survey

Nicola Fusco<sup>a,b,\*</sup>, Mariia Ivanova<sup>a</sup>, Chiara Frascarelli<sup>a,b</sup>, Carmen Criscitiello<sup>a,c</sup>, Bruna Cerbelli<sup>d</sup>, Maria Gemma Pignataro<sup>d</sup>, Angelina Pernazza<sup>d</sup>, Elham Sajjadi<sup>a,b</sup>, Konstantinos Venetis<sup>a</sup>, Giulia Cursano<sup>\*</sup>, Fabio Pagni<sup>a,c</sup>, Camillo Di Bella<sup>†</sup>, Marina Accardo<sup>‡</sup>, Michelina Amato<sup>b</sup>, Paolo Amico<sup>†</sup>, Caterina Bartoli<sup>†</sup>, Giuseppe Bogina<sup>†</sup>, Laura Bortesi<sup>†</sup>, Renzo Boldorini<sup>†</sup>, Sara Bruno<sup>\*</sup>, Daniela Cabibi<sup>†</sup>, Pietro Caruana<sup>\*</sup>, Emanuele Dainese<sup>‡</sup>, Elisa De Camilli<sup>\*</sup>, Vladimiro Dell'Anna<sup>4</sup>, Loren Duda<sup>\*</sup>, Carmela Emmanuele<sup>\*</sup>, Giuseppe Nicolò Fanelli<sup>†</sup>, Bethania Fernandes<sup>\*</sup>, Gerardo Ferrara<sup>\*</sup>, Letizal Gnetti<sup>\*</sup>, Alessandra Gurrera<sup>\*</sup>, Giorgia Leone<sup>\*</sup>, Raffaella Lucci<sup>†</sup>, Cristina Mancini<sup>‡</sup>, Grazia Marangi<sup>‡</sup>, Mauro G. Mastropasqua<sup>aa</sup>, Lorenzo Nibid<sup>\*</sup><sup>bh,aa</sup>, Sandra Orrù<sup>\*</sup><sup>d</sup>, Maria Pastena<sup>\*\*</sup>, Valeria Zuccalà<sup>\*\*</sup>, Antonio Rizzo<sup>\*</sup>, Leopoldo Costarelli<sup>†</sup>, Francesca Pietribiasi<sup>\*†</sup>, Alfredo Santinelli<sup>\*\*\*</sup>, Cristian Scatena<sup>†</sup>, Giuseppe Curgiliano<sup>\*+,c</sup>, Elena Guernini<sup>\*</sup>, Coco<sup>\*,b</sup>, Maurizio Martini<sup>\*\*\*</sup>, Paolo Saziano<sup>\*\*\*</sup>, Isabella Castellano<sup>\*\*\*</sup>, Giulia d'Amati<sup>†</sup>

### **Conclusions (1): a reproducibility study**



- In mTNBC, CPS can be reliably assessed either by 22C3 (which was used in the KEYNOTE studies) or SP263, providing the use of the dedicated platform (i.e. Dako and Ventana).
- CPS and IC are not interchangeable tests in mTNBC
- PD-L1 test in mTNBC is reproducible when assessed by specifically trained pathologists using CE-IVD assays, i.e. 22C3 and SP263 for CPS and SP142 for IC score.



#### (22C3 vs 0.874-0.869-SP263) 0.938 0.945) 1 (CI 0.725-(SP142) 1.274) CPS (22C3 v SP263) vs IC

ICC

0.939

(CI

0.913-

0.96)

0.972

(CI

0.96-

0.982)

0.909

(CI

Kappa

0.938

(CI

0.857-

1.018)

0.972

(CI

0.890-

1.052)

0.907

(CI



# **Conclusions (2): The role of Digital Pathology**

- Harmonization efforts aim to standardize PD-L1 testing for better patient selection.
- TILs correlate with favorable outcomes in TNBC.
- MMR alterations are rare but predictive, indicating potential ICI response.
- Al plays a growing role in enhancing biomarker assessment and precision medicine.
- Standardized practices and validation are essential for successful AI application.





Immune Biomarkers in Triple-Negative Breast Cancer: Improving the Predictivity of Current Testing Methods

Francesca Maria Porta <sup>1</sup><sup>10</sup>, Elham Sajjadi <sup>1,2</sup><sup>0</sup>, Konstantinos Venetis <sup>1</sup>, Chiara Frascarelli <sup>1,2</sup>, Giulia Cursano <sup>1</sup>, Elena Guerini-Rocco <sup>1,2</sup>, Nicola Fusco <sup>1,2</sup>,\*<sup>0</sup> and Mariia Ivanova <sup>1</sup><sup>0</sup>

# NOVEL AND EMERGING BIOMARKERS IN BREAST CANCER

- PD-L1 (CPS/IC)  $\rightarrow$  I-A
- HER2-low  $\rightarrow$  I-A
- PIK3CA  $\rightarrow$  I-A
- ESR1 → II-A
- TROP-2  $\rightarrow$  I-C



### **PIK3CA** mutations in breast cancer



Image adapted from: Brufsky AM & Dickler MN. Oncologist. 2018; **23:**528 . 1.Hanah et al J. Med. Chem. 2022, 65, 16589–16621

The NEW ENGLAND JOURNAL of MEDICINE

#### ORIGINAL ARTICLE

#### Alpelisib for *PIK3CA*-Mutated, Hormone Receptor–Positive Advanced Breast Cancer

F. André, E. Ciruelos, G. Rubovszky, M. Campone, S. Loibl, H.S. Rugo,
H. Iwata, P. Conte, I.A. Mayer, B. Kaufman, T. Yamashita, Y.-S. Lu, K. Inoue,
M. Takahashi, Z. Pápai, A.-S. Longin, D. Mills, C. Wilke, S. Hirawat,
and D. Juric, for the SOLAR-1 Study Group\*
N Engl J Med 2019;380:1929-40.
DOI: 10.1056/NEJMoa1813904

CANCER DISCOVERY JANUARY 2022

#### **RESEARCH ARTICLE**

RTK-Dependent Inducible Degradation of Mutant PI3Kα Drives GDC-0077 (Inavolisib) Efficacy ₪

Kyung W. Song: Kyle A. Edgar<sup>3</sup>, Emily J. Hanan<sup>2</sup>, Marc Hafner<sup>2</sup>, Jason Oeh<sup>4</sup>, Mark Merchant<sup>4</sup>, Deepak Sampath<sup>4</sup>, Michelle A. Nannin<sup>4</sup>, Rebecca Hong<sup>4</sup>, Lilian Phu<sup>2</sup>, Willim F. Forrest<sup>3</sup>, Eric Stawiski<sup>3</sup>, Esphen Schmidt<sup>6</sup>, Nicholas Endres<sup>6</sup>, Jane Guan<sup>3</sup>, Jeffrey J. Wellin<sup>4</sup>, Jonathan Cheong<sup>4</sup>, Emile G. Plise<sup>7</sup>, Sall D. Lewis Phillips<sup>1</sup>, Laurent Salphatf<sup>7</sup>, Timothy P. Heffron<sup>2</sup>, Alan G. Olivero<sup>2</sup>, Shiva Malek<sup>3</sup>, Steven T. Staben<sup>2</sup>, Donald S. Kirkpatrick<sup>2</sup>, Anwesha Dey<sup>1</sup>, and Lori S. Friedman<sup>4</sup>



- ~40% of HR+/HER2- aBC patients have a *PIK3CA* mutation, and can have endocrine resistance and/or shorter mPFS
- Hotspot regions: ex 7, 9, 20
- PIK3CA mutations can be detected in tissue (FFPE) or plasma samples.



#### *PIK3CA* Mutations as a Molecular Target for Hormone Receptor-Positive, HER2-Negative Metastatic Breast Cancer

Nicola Fusco<sup>1,27</sup>, Umberto Malapollo<sup>27</sup>, Matteo Fassan<sup>45</sup>, Caterina Marchio<sup>6,7</sup>, Simonetta Buglioni<sup>8</sup>, Simonetta Zupo<sup>9</sup>, Cammen Criscitiello<sup>2,19</sup>, Paolo Vigneri<sup>11,12</sup>, Angelo Paolo Dei Tos<sup>45</sup>, Eugenio Maioran<sup>01</sup> and Giuseppe Viale<sup>1,28</sup>

# PIK3CA: RATIONALE FOR CLINICAL TESTING 2024?

| Compound 👻<br>Generic Name 👻 | Trade Name 👻 | Combination 🖌                        | Indication 🗸                                                                        | Phase 👻<br>123F | Expected 👻<br>Filing |
|------------------------------|--------------|--------------------------------------|-------------------------------------------------------------------------------------|-----------------|----------------------|
| ♦ RG6114 Inavolisib          |              | plus palbociclib plus<br>fulvestrant | 1L metastatic ER-<br>positive and HER2-<br>negative breast can-<br>cer (1L HR+ mBC) |                 | 2024                 |

Description/Summary:

Inavolisib (RG6114, GDC-0077) is a small molecule PI3 kinase (PI3K) inhibitor. Dysregulation of PI3K signaling is implicated in a broad range of human cancers, and activating mutations in the PI3K alpha-isoform gene (PIK3CA) are common oncogenic drivers. The PI3K/Akt/mTOR pathway regulates cell growth and survival.

Managed By:

Roche Late Stage Product Development

Inavolisib is a PI3K $\alpha$ -specific inhibitor that also promotes degradation of mutant p110 $\alpha$ . It has demonstrated encouraging preliminary antitumor activity in pts with PIK3CA-mutated HR+ BC as a monotherapy, and in combo with other anticancer agents

https://www.roche.com/solutions/pipeline/#81ad1b25-f415-4714-9450-45c188614658

# ctDNA IN MBC

- As in early breast cancer, the quantity of ctDNA correlates with poor survival
- serial measurement of ctDNA has the potential to monitor and predict treatment response.
- PADA-1 trial (NCT03079011) is currently investigating the utility of serial ESR1 ctDNA measurements in HER2-negative MBC patients treated with palbociclib and AI



### **PIK3CA** mutational analysis



Next-Generation Sequencing

#### Pros and cons of the *PIK3CA* molecular testing methods

|               | PROS                  | CONS                                 |  |  |
|---------------|-----------------------|--------------------------------------|--|--|
|               | Cost-effective        | High amount of material required     |  |  |
|               | Short turnaround time | Affected by low tumor cell content   |  |  |
|               | Widely available      | Variable reference range             |  |  |
|               | High sensitivity      | No allele frequency                  |  |  |
| Real Time PCR | Wide choice of panels | Affected by the pre-analytical phase |  |  |

|                 | PROS                                                                                                                          |               |   | CONS                                 |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|---|--------------------------------------|
|                 | Higher sequence                                                                                                               | ing depth for | • | Expensive                            |
|                 | <ul> <li>increased sensitivity (down to 1%)</li> <li>Multi-target panels</li> <li>Low input of nucleic acid needed</li> </ul> |               | • | Long turnaround time                 |
|                 |                                                                                                                               |               | • | Not widely available                 |
|                 |                                                                                                                               |               | • | Affected by the pre-analytical phase |
| Next-Generation | tion • Wide choice of panels                                                                                                  |               | • | Dedicated personnel required         |
| Sequencing      |                                                                                                                               |               |   |                                      |

### **PIK3CA MUTATIONS IN BREAST CANCERS: TESTING STRATEGIES**



Analytical Performance of Next-Generation Sequencing and RT-PCR on Formalin-Fixed Paraffin-Embedded Tumor Tissues for *PIK3CA* Testing in HR+/HER2— Breast Cancer

Konstantinos Venetis <sup>1,2,†</sup>, Francesco Pepe <sup>3,†</sup>, Elisabetta Munzone <sup>4</sup>, Elham Sajjadi <sup>1,2</sup>, Gianluca Russo <sup>3</sup>, Pasquale Pisapia <sup>3</sup>, Mariia Ivanova <sup>1</sup>, Giuseppina Bonizzi <sup>1</sup>, Davide Vacirca <sup>1</sup>, Alessandra Rappa <sup>1</sup>, Alberto Ranghiero <sup>1</sup>, Sergio Vincenzo Taormina <sup>1</sup>, Giuseppe Viale <sup>1,2</sup>, Giancarlo Troncone <sup>3</sup>, Massimo Barberis <sup>1</sup>, Elena Guerini-Rocco <sup>1,2</sup>, Umberto Malapelle <sup>3,\*,‡</sup> and Nicola Fusco <sup>1,2,\*,‡</sup>



Pepe et al. Unpublished 2023

### Landscape of *PIK3CA* mutation testing in Italy - Nationwide survey



| North-west            | 52 |              |
|-----------------------|----|--------------|
| Valle d'Aosta         | 2  |              |
| Piemonte              | 7  |              |
| Lombardia             | 38 |              |
| Liguria               | 5  | Yes, in Div  |
|                       |    | n=54 (46     |
| North-east            | 15 |              |
| Veneto                | 7  |              |
| Friuli Venezia Giulia | 1  |              |
| Emilia Romagna        | 7  |              |
| Center                | 18 | Q3: W<br>ado |
| Toscana               | 3  |              |
| Umbria                | 5  | Direc        |
| Marche                | 5  |              |
| Lazio                 | 2  |              |
| Abruzzo               | 3  | PT DCD       |
| O                     | 50 | n=15 (229    |
| South and Islands     | 53 |              |
| Campania              | 24 |              |
| Puglia                | 8  |              |
| Calabria              | 8  |              |
| Sardegna              | 1  |              |
| Sicilia               | 12 |              |
|                       |    |              |



NGS

n=30 (42%)



#### Pepe et al. Unpublished 2023

#### Mutation features & dynamics did not significantly predict switch benefit

No difference by <u>which</u> ESR1mut



**ESR1**<sub>mut</sub> & PADA-1 design



#### ESR1 mutations

- are acquired during aromatase inhibitors (AI) therapy in ~40% of ER+ HER2- mBC pts and drive resistance
- can be detected by ctDNA analysis in blood (bESR1<sub>mut</sub>)
- retain partial sensitivity to fulvestrant (FUL), a selective estrogen receptor dégrader (SERD)

#### PADA-1

• Strategy: targeting rising bESR1<sub>mut</sub> when they become detectable under AI+Palbociclib (PAL)<sup>[1]</sup>



Spoerke JM, Gendreau S, Walter K, Qiu J, Wilson TR, Savage H, Aimi J, Derynck MK, Chen M, Chan IT, Amler LC, Hampton GM, Johnston S, Krop I, Schmid P, Lackner MR. Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant. Nat Commun. 2016;7:11579.

# ESR1 mutations associated with increased metastatic spread and liver metastasis



Nguyen B Cell 2022



Venetis et al. Cancer Treat Rev 2023 (accepted)

### ctDNA for the detection of *PIK3CA* mutations in breast cancer

| ARTICLES                                 |  |
|------------------------------------------|--|
| ttps://doi.org/10.1038/s43018-020-0047-1 |  |

# Alterations in *PTEN* and *ESR1* promote clinical resistance to alpelisib plus aromatase inhibitors

Pedram Razavi <sup>12,3</sup><sup>23</sup>, Maura N. Dickler<sup>1,11</sup>, Payal D. Shah<sup>4</sup>, Weiyi Toy<sup>2</sup>, David N. Brown <sup>55</sup>, Helen H. Won<sup>6</sup>, Bob T. Li <sup>10</sup>, Ronglai Shen<sup>7</sup>, Neil Vasan<sup>1,3</sup>, Shanu Modi<sup>1,3</sup>, Komal Jhaveri<sup>1,3</sup>, Betty Ann Caravella<sup>8,3</sup>, Sujata Patil<sup>3,7</sup>, Pier Selenica<sup>5</sup>, Stephen Zamora<sup>1</sup>, Aimee M. Cowan<sup>1</sup>, Elizabeth Comen<sup>1,3</sup>, Andy Singh<sup>9</sup>, Anne Covey<sup>8</sup>, Michael F. Berger<sup>2,3,5,6</sup>, Clifford A. Hudis<sup>1,3,10</sup>, Larry Norton<sup>1,3</sup>, Rebecca J. Nagy<sup>9</sup>, Justin I. Odegaard<sup>9</sup>, Richard B. Lanman <sup>10</sup>, David B. Solit <sup>12,3,6</sup>, Mark E. Robson<sup>1,3</sup>, Mario E. Lacouture<sup>1,3</sup>, Edi Brogi<sup>3,5</sup>, Jorge S. Reis-Filho <sup>12,5</sup>, Mary Ellen Moynahan<sup>1,3</sup>, Maurizio Scaltriti <sup>2,3,5</sup> and Sarat Chandarlapaty <sup>12,2,3</sup>

• Uncover mechanisms of resistance doing a longitudinal analysis of tumor and plasma circulating tumor DNA (ctDNA) among such PIK3CA-mutant, HR+ metastatic breast cancer patients from a phase I/II trial combining alpelisib with an aromatase inhibitor

| d    | Clinical benefit         |                 | No clinica    | al benefit    |     |
|------|--------------------------|-----------------|---------------|---------------|-----|
|      |                          | Best response   |               |               |     |
| 100% |                          | PIK3CA          |               |               | 83% |
| 0%   |                          | PTEN*           |               |               | 17% |
| 0%   |                          | ESR1**          |               |               | 33% |
| 5%   |                          | AKT1            |               |               | 6%  |
| 10%  |                          | FGFR1           |               |               | 22% |
| 0%   |                          | FGFR2           |               |               | 6%  |
| 10%  |                          | ERBB2           |               |               | 6%  |
| 5%   |                          | ERBB3           |               |               | 6%  |
| 5%   |                          | EGFR            |               |               | 6%  |
| 10%  |                          | NF1             |               |               | 0%  |
| 35%  |                          | TP53            |               |               | 11% |
| 30%  |                          | CDH1            |               |               | 17% |
| 10%  |                          | GATA3           |               |               | 11% |
|      | <i>n</i> = 20            | )               |               | <i>n</i> = 18 |     |
|      | Genetic alteration       |                 |               | Best response | •   |
|      | Amplification Missense r | mutation Trunca | ting mutation | CR SD         |     |
|      | Deep deletion Inframe mu | utation Wild ty | ре            | PR PD         |     |

nature cancer

# Approach to newly diagnosed HR+/HER2- MBC



PRESENTED BY: Daniel G. Stover, MD Daniel.stover@osumc.edu @StoverLab Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org



Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

4oncommunity **Umberto Malapelle** Fabio Pagni Matteo Fassan **Carmen Criscitiello** Sara Pilotto

UNIVERSITÀ DEGLI STUDI DI MILANO LA STATALE

**Giuseppe Viale** 

Giovanni Mazzarol

Oriana Pala

Elisa De Camilli

Giuseppe Renne

Mariano Lombardi

Fausto Maffini

IOX IEO

#### Research team: Elham Sajjadi **Konstantinos Venetis** Marija Ivanova Chiara Frascarelli Giulia Cursano **Eltjona Mane**

IEO **European Institute** of Oncology

**Division of Pathology** Daniela Lepanto Mariacristina Ghioni Chiara Casadio Clementina Di Tonno Benedetta Di Venosa Elena Guerini Rocco Eleonora Pisa Luca Bottiglieri Valeria Midolo Marianna D'Ercole Francesca M Porta Marta Cruz Blanco

**GIPaM/SIAPeC** 

Isabella Castellano Leoploldo Costarelli Giulia d'Amati Francesca Pietribiasi Antonio Rizzo Alfredo Santinelli Cristian Scatena

C.F.086912 casella ricerca sar

5x1000 allo IEO la lotta contro il cancro non si ferma

Digital Biobank team: Giuseppina Bonizzi Maria Capra Cristina Cassi Camilla Rosella Musico Luca Leoni

Thank you!